基于U-net的道路缺陷检测

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 616-619.doi: 10.11896/jsjkx.201200059

• 交叉& 应用 • 上一篇    下一篇

基于U-net的道路缺陷检测

彭磊, 张辉   

  1. 长沙理工大学电气与信息工程学院 长沙410000
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 张辉(zhanghuiby@csust.edu.cn)
  • 作者简介:1249028596@qq.com

U-net for Pavement Crack Detection

PENG Lei, ZHANG Hui   

  1. School of Electrical & Information Engineering,Changsha University of Science & Technology,Changsha 410000,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:PENG Lei,born in 1996,postgraduate.His main research interests include image processing and deep learning.
    ZHANG Hui,Ph.D,assistant professor,visiting scholar.His main research interests include machine vision,sparse representation,visual tracking.

摘要: 道路是现代交通运输最主要的途径之一,道路缺陷对于道路安全有着巨大威胁。因此准确检测道路缺陷对道路养护修缮具有重要意义。道路缺陷具有低连续性和低对比度的特点,现阶段多采用人工检测方法,检测效率低,人力成本高,且检测人员的安全可能会遭受威胁。随着深度学习的发展,神经网络方法被广泛应用于工程实践。U-net是具有编码器-解码器结构的端到端深度学习模型,对微小对象检测能力强,适用于道路裂缝缺陷检测。利用U-net深度学习网络对道路缺陷进行检测,能提高检测效率,无需人工干预,保证检测人员安全,降低检测的人工成本。实验结果表明,U-net网络在数据集Crack500上的效果优于FCN,Segnet等语义分割网络,在保持较高精度的情况下实现了道路缺陷检测。在此基础上对U-net网络层数进行超参数优化,确定该数据集上的最优U-net网络结构。

关键词: U-net, 卷积神经网络, 缺陷检测, 深度学习

Abstract: Road is one of the most crucial ways for transportation.Crack on road will cause great danger to transportation if you leave it unchecked,so it is important to detect crack precisely in road maintenance.Road cracks are usually discontinuous and low-contrast which is difficult to detect using traditional methods of image processing.In this paper,we utilize U-net for road crack detection which is an end-to-end with encoder-decoder structure efficient deep learning network on dataset Crack500,while traditional methods are time-consuming and labor-consuming.U-net is appropriate for road crack detection because of its ability to catch fine details in image.Experiment results demonstrate that U-net outperforms other detect methods.Furthermore,we discuss the difference when modifying the number of conv-blocks in U-net.Experiment results show that it achieves best performance when the number of conv-blocks set to be 7.

Key words: Convolutional neural network, Deep learning, Defect detection, U-net

中图分类号: 

  • TP391
[1]FERGUSON M,RONAY A,LEE Y T,et al.Detection and Segmentation of Manufacturing Defects with Convolutional Neural Networks and Transfer Learning[C]//Smart Sustain Manuf Syst.2018:2-10.<br /> [2]PRATEEK P,KRISTIN J D,NENAD G,et al.AutomatedCrack Detection on Concrete Bridges[J].IEEE Transactions on Automation Science and Engineering,2016,13(2):591-599.<br /> [3]CHEN F,JAHANSHAHI M R.NB-CNN:Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion[J].IEEE Transactions on Industrial Electronics,2018,65(5):4392-4400.<br /> [4]RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolu-tional Networks for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-assisted Intervention,2015:234-241.<br /> [5]JONATHAN L,EVAN S,TREVOR D.Fully Convolutional Networks for Semantic Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2015:3431-3440.<br /> [6]CAO V D,LE DUC A.Autonomous concrete crack detectionusing deep fully convolutional[J].Automation in Construction,2019,99:52-58.<br /> [7]ZHANG L,YANG F,ZHANG D Y M.Road crack detectionusing deep convolutional neural network[C]//IEEE International Conference on Image Processing.2016:3708-3712.<br /> [8]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Seg-Net:A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.<br /> [9]ADAM P,ABHISHEK C,SANGPIL K,et al.Enet:A DeepNeral Network Architecture for Real-Time Semantic Segmentation[J].arXiv:1606.02147.<br /> [10]QIN Z,ZHENG Z,LI Q Q,et al.DeepCrack:Learning Hierarchical Convolutional Features for Crack Detection[J].IEEE Transactions on Image Processing,2019,28(3):1498-1512.<br /> [11]LIU Y H,YAO J,LU X H,et al.DeepCrack:A deep hierarchical feature learning architecture for crack segmentation[J].Neurocomputing,2019,338(21):139-153.<br /> [12]ZHANG K G,ZHANG Y T,CHENG H D.CrackGAN:Pavement Crack Detection Using Partially Accurate Ground Truths Based on Generative Adversarial Learning[J].arXiv:1909.08216v2.<br /> [13]WU H,ZHANG J,HUANG K,et al.FastFCN:Rethingking Dilated Convolution in the Backbone for Semantic Segmentation[J].arXiv:1903.11816v1.<br /> [14]LIU W J,HUANG Y C,LI Y,et al.FPCNet:Fast Pavement Crack Detection Network Based on Encoder-Decoder Architecture[J].arXiv:190248v1.<br /> [15]CHEN T Y,CAI Z H,ZHAO X,et al.Pavement crack detection and recognition using the architecture of segNet[J].Journal of Industrial Information Integration.2020,18.<br /> [16]ZHAO H S,SHI J P,QI X J,et al.Pyramid Scene Parsing Network[J].arXiv:1612.01105v2.<br /> [17]RON L,CAGKAN Y,GITTA K,et al.RadioUNet:Fast Radio Map Estimation with Convolutional Neural Networks[J].ar-Xiv:1911.09002.<br /> [18]ZHU H G,MIAO Y,ZHANG X,et al.Semantic Image Segmentation with Improved Position Attention and Feature Fusion[J].Neural Processing Letters,2020,52:329-351.<br /> [20]ZHOU Z W,MD M R S,NIMA T,et al.UNet++:A Nested U-Net Architecture for Medical Image Segmentation[J].arXiv:1807.10165v1.<br /> [21]DOMINGO M.Aluminum Casting Inspection Using DeepLearning:A Method Based on Convolutional Neural Networks[J].Journal of Nondestructive Evaluation,2020,39:12.<br /> [22]LIN J H,YAO Y,MA L,et al.Detection of a casting defect tracked by deep convolution neural network[J].The International Journal of Advanced Manufacturing Technology,2018,97:573-581.<br /> [23]YU F,VLADLEN K.Multi-Scale Context Aggregation by Di-lated Convolutions[J].arXiv:1511.07122.<br /> [24]HAO M,LU C F,WANG G Q,et al.An improved Neural Segmentation Model for Crack Detection-Image Segmentation Mo-del[J].Bulgarian Academy Sciences,2017,17(2):119-133.<br /> [25]GANG S,LI S,SUN G,et al.Squeeze-and-Excitation Networks[J].arXiv:1709.01507v4.<br /> [26]XU H Y,SU X,WANG Y,et al.Automatic Bridge Crack Detection Using a Convolutional Neural Network[J].Applied Science,2019,9(14),2867.<br /> [27]YANG F,ZHANG L,YU S J,et al.Feature Pyramid and Hierarchical Boosting Network for Pavement Crack Detection[J].IEEE Transaction on Intelligent Transportation Systems,2020,21(4):1525-1535.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[4] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[5] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[6] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[7] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[8] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[9] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[10] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[11] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[12] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!