基于主成分回归和分层置信规则库的企业风险评估模型

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 570-575.doi: 10.11896/jsjkx.201200038

• 信息安全 • 上一篇    下一篇

基于主成分回归和分层置信规则库的企业风险评估模型

刘栅杉1, 朱海龙1, 韩晓霞2, 穆全起1, 贺维1,2   

  1. 1 哈尔滨师范大学计算机科学与信息工程学院 哈尔滨150025
    2 中国人民解放军火箭军工程大学 西安710025
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 朱海龙(2656972775@qq.com)
  • 作者简介:1242185650@qq.com
  • 基金资助:
    黑龙江省自然科学基金项目(F2018023,LH2021F038);哈尔滨师范大学博士科研启动金项目(XKB201905);哈尔滨师范大学计算机科学与信息工程学院自然科学基金项目(JKYKYZ2020004)

Enterprise Risk Assessment Model Based on Principal Component Regression and HierarchicalBelief Rule Base

LIU Shan-shan1, ZHU Hai-long1, HAN Xiao-xia2, MU Quan-qi1, HE Wei1,2   

  1. 1 College of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025,China
    2 Rocket Force University of Engineering,Xi'an 710025,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LIU Shan-shan,born in 1997,postgra-duate.Her main research interests include artificial intelligence and belief rule base.
  • Supported by:
    Natural Science Foundation of Heilongjiang Province of China(F2018023,LH2021F038),Ph.D.Research Start-up Foundation of Harbin Normal University(XKB201905) and Natural Science Foundation of the School of Computer Science and Information Engineering,Harbin Normal University(JKYKYZ2020004).

摘要: 作为一种具有专家系统和数据驱动模型特征的新型智能专家系统,置信规则库(Belief Rule Base,BRB)在风险评估和健康状态评估等领域中发挥着重要作用。BRB因其自身既可以处理数值数据,又可以处理来自异构源的语言定性知识的优势,能够帮助企业进行有效的风险评估。但是实际企业风险评估体系中指标种类较多且有冗余性,传统BRB无法进行指标选择且易造成规则爆炸从而导致计算量大和模型准确度较低等问题。针对上述问题,文中提出一种主成分回归和分层置信规则库(Principal Component Regression,Hierarchical Belief Rule Base,PCR-HBRB)的企业风险评估模型,通过筛选有效指标节约计算时间,同时结合定性与定量信息进行分析评估从而得到较高准确度的评估结果。首先,通过PCR筛选出影响企业的主要指标,根据筛选出来的指标建立分层置信规则库(HBRB)的企业风险评估推理模型,并采用证据推理(Evidential Reasoning,ER)对模型进行推理。然后,采用投影协方差矩阵自适应进化策略(Projection Covariance Matrix Adaptation Evolutionary Strategies,P-CMA-ES)对模型进行优化。最后,通过对某企业的财务状况进行风险评估案例验证了模型的有效性。

关键词: 分层置信规则库, 企业风险评估, 投影协方差矩阵自适应进化策略, 证据推理, 主成分回归

Abstract: As a new intelligent expert system with the characteristics of expert system and data-driven model,the belief rule base (BRB) plays an important role in risk assessment and health status assessment.BRB has the advantages of processing numerical data and linguistic qualitative knowledge from heterogeneous sources,which can help enterprises conduct effective risk assessments.However,in the actual enterprise risk evaluation system,there are many types of indicators and redundancy.Traditional BRB cannot select indicators and is easy to cause rule explosion,which leads to problems such as large calculation amount and low model accuracy.In response to the above problems,this paper proposes a principal component regression and hierarchical confidence rule base (Principal Component Regression,Hierarchical Belief Rule Base,PCR-HBRB) enterprise risk assessment model,which saves calculation time by screening effective indicators,and combining qualitative with quantitative information to analyze and evaluate,to obtain higher accuracy evaluation results.Firstly,the PCR method is used to screen out the main indicators that affect the states of the company,the hierarchical confidence rule base (HBRB) inference model of company status risk assessment is established based on the selected indicators,and the model is reasoned by the evidence reasoning (ER).Then,the projection covariance matrix adaptive evolution strategy (P-CMA-ES) is used to optimize the model.Finally,the effectiveness of the model is verified through a risk assessment case of a certain enterprise's financial situation.

Key words: Enterprise risk assessment, Evidential reasoning, Hierarchical belief rule base, Principal component regression, Projection covariance matrix adaptation evolutionary strategies

中图分类号: 

  • TP391
[1]WANG Z Q,SONG X B,WANG Y Z.Evaluation and Research on Short-term Financial Risks of my country's Real Economy-Comprehensive Evaluation and Early Warning of Short-term Financial Risks with Consideration of Stock and Flow[J].Management World,2020,36(10):156-170,216-222.
[2]ZHAN X,GUO H,HE X Y,et al.Research on Security Risk Assessment Method of State Grid Edge Computing Information System[J].Computer Science,2019,46(S2):428-432.
[3]LIU J F,CHEN J.Evaluation of Network Node Invasion Risk Based on Fuzzy Game Rules[J].Computer Science,2018,45(10):138-141.
[4]CHEN X,XIANG Y.Construction and Application of Enterprise Risk Knowledge Graph[J].Computer Science,2020,47(11):237-243.
[5]DU G S,LIU Z X,LU H F.Application of innovative risk early warning mode under big data technology in Internet credit financial risk assessment[J].Journal of Computational and Applied Mathematics,2020,386:113260.
[6]LI Y,LI S,JING L W.Financial Risk Network Evaluation Mo-del Based on Bayesian Model and Machine Learning Algorithm[J].Journal of Jilin University(Engineering and Technology Edition),2020,50(5):1862-1869.
[7]SUI S.Financial Risk Assessment of Listed Enterprises in Marine Engineering Equipment Manufacturing Industry[J].Journal of Coastal Research,2019,94(sp1):788-792.
[8]QIONG K.Financial risk assessment model based on big data[J].International Journal of Modeling,Simulation,and Scientific Computing,2019,10(4):14.
[9]MO Q K,JIAN X T,SI M Y.Financial Risk Assessment of an Ocean Shipping Company Based on the AHP[J].Journal of Coastal Research 2,2020,106(sp1):481-485.
[10]BRUNNER-KIRCHMAIR T M,WIENER M.Knowledge ispower-conceptualizing collaborative financial risk assessment[J].Journal of Risk Finance,2019,20(3):226-248.
[11]QIN MENGGE.China's one belt,one road,financial risk assessment based on factor analysis[J].China Market,2019(32):14-16,24.
[12]QIU X G,WANG R Z,ZHANG W G,et al.Discrimination of Mine Water Inrush Source Based on PCA-CRHJ model[J].Industrial and Mining Automation,2020,46(11):65-71.
[13]HAN P P,XIA Y,DING M,et al.Wind farm equivalent modeling based on PCA and CA-ST methods[J].Acta Solar Energy,2020,41(11):267-277
[14]LIU Y,HU W,GUO X X,et al.Rapid discrimination of three marine fish surimi by Tri-step infrared spectroscopy combined with Principle Component Regression[J].Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2015,149:516-522.
[15]YANG J B,XU D L.A study on generalising Bayesian inference to evidential reasoning[C]//International Conference on Belief Functions,BELIEF 2014.Belief Functions:Theory and Applications,2014:180-189.
[16]YANG J B,LIU J,WANG J,et al.Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J].IEEE Transactions on Systems,Man,and Cybernetics-Part A:Systems and Humans,2006,36(2):266-285.
[17]ZHAO F J,ZHOU Z J,HU C H,et al.A New Evidential Reasoning-Based Method for Online Safety Assessment of Complex Systems[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(6):954-966.
[18]QIU S Q,MOHAMED S,WALTER S,et al.A valuation-based system approach for risk assessment of belief rule-based expert systems[J].Information Sciences,2018,466:323-336.
[19]ZHOU Z J,FENG Z C,HU C H,et al.Aeronautical relay health state assessment model based on belief rule base with attribute reliability[J].Knowledge-Based Systems,2020,197:0950-7051.
[20]ZHOU Z J,HU G Y,HU C H,et al.A Survey of Belief Rule-Base Expert System[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,1-15.
[21]LI G L,ZHOU Z J,HU C H,et al.A new safety assessment model for complex system based on the conditional generalized minimum variance and the belief rule base[J].Safety Science,2017,93:108-120.
[22]ZHOU Z J,HU G Y,ZHANG B C,et al.A Model for Hidden Behavior Prediction of Complex Systems Based on Belief Rule Base and Power Set[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(9):1649-1655,2018.
[23]FENG Z C,ZHOU Z J,HU C,et al.A New Belief Rule Base Model With Attribute Reliability[J].IEEE Transactions on Fuzzy Systems,2019,27(5):903-916.
[24]HE W,HU G Y,ZHOU Z J,et al.A new hierarchical belief-rule-based method for reliability evaluation of wireless sensor network[J].Microelectronics Reliability,2018,87:33-51.
[25]YIN X J,WANG Z L,ZHANG B C,et al.A Double Layer BRBModel for Health Prognostics in Complex Electromechanical System[J].IEEE Access,2017,5:23833-23847.
[1] 陈婷婷,王应明.
基于AR模型的置信规则库结构识别算法
Structure Identification of Belief-rule-base Based on AR Model
计算机科学, 2018, 45(6A): 79-84.
[2] 张美璟, 王应明.
一种考虑等级语义关联的证据推理决策方法
Decision Making Approach Based on Evidential Reasoning Considering SemanticRelationship among Assessment Grades
计算机科学, 2018, 45(12): 166-169. https://doi.org/10.11896/j.issn.1002-137X.2018.12.026
[3] 邓聪,冀常鹏,刘典.
认知无线电网络中空间混淆数据存在时的定位研究
Localization in Cognitive Radio Systems in the Presence of Spatially Obfuscated Data
计算机科学, 2013, 40(12): 169-173.
[4] 傅仰耿 巩晓婷 张玺霖 吴英杰.
Dempster证据合成法则的通用实现方法
General Algorithms for Dempster's Combination Rule of Evidence
计算机科学, 2012, 39(12): 184-187.
[5] 魏守智 赵海 王刚 张晓丹.
复杂信息系统分布式决策融合模型及应用研究

计算机科学, 2005, 32(4): 22-23.
[6] 徐从富 耿卫东.
解决证据推理中一类“0绝对化”问题的方法

计算机科学, 2000, 27(5): 53-56.
[7] 孙波.
企业智能支持系统的证据推理支持策略研究

计算机科学, 1998, 25(2): 37-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!