基于行列解耦采样的轻量车道线检测模型

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 416-419.doi: 10.11896/jsjkx.201100206

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于行列解耦采样的轻量车道线检测模型

陈浩楠, 雷印杰, 王浩   

  1. 四川大学电子信息学院 成都610065
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 雷印杰(yinjie@scu.edu.cn)
  • 作者简介:enaoan@foxmail.com
  • 基金资助:
    国家自然科学基金(61972435)

Lightweight Lane Detection Model Based on Row-column Decoupled Sampling

CHEN Hao-nan, LEI Yin-jie, WANG Hao   

  1. College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:CHEN Hao-nan,born in 1996,postgra-duate.His main research interests include deep learning and computer vision.
    LEI Yin-jie,born in 1983,Ph.D,asso-ciate professor,Ph.D supervisor.His main research interests include deep learning and computer vision.
  • Supported by:
    National Natural Science Foundation of China(61972435).

摘要: 随着深度学习的发展,基于深度卷积神经网络的车道线检测模型在自动驾驶系统和高级辅助驾驶系统中得到了广泛的应用。这些模型虽然有较高的精度,但通常计算量大且运行速度慢。为了解决该问题,提出了一种车道线检测任务专用的轻量神经网络模型。首先,提出了一种行列解耦采样的卷积模块,该模块利用图像中车道线区域的行列可分解性对传统的残差卷积模块进行了合理的优化。其次,利用深度可分离卷积技术进一步降低行列解耦采样卷积模块的计算量。此外,还设计了一种金字塔空洞卷积模块来增加模型的感受野。在CULane数据集上的实验的结果表明,文中提出的轻量车道线检测模型与之前最好的SCNN模型相比,浮点计算量降低了95.2%,F1分数提高了1.0%,在保持较高精度的前提下显著降低了车道线检测模型的计算量。

关键词: 车道线分割, 车道线检测, 计算机视觉, 卷积神经网络, 轻量模型

Abstract: With the development of deep learning,lane detection model based on deepconvolution neural network has been widely applied in autonomous driving system and advanced driving assistant system.These models achieve high accuracy but usually have the disadvantages of large computation and high latency.In order to solve this problem,a specially designed lightweight network for lane detection is proposed.Firstly,a convolution module with row-column decoupled sampling is proposed,which optimizes traditional residual convolution module by utilizing the row-column decomposability of lane area in the image.Secondly,the depth-wise separable convolution technology is used to further reduce the computational complexity of the row-column decoupled sampling convolution module.In addition,a pyramid dilation convolution module is designed to increase the receptive field of the mo-del.The experimental results on CULane dataset show that comparing with the state of the art model SCNN,the floating-point ope-rations of our model is reduced by 95.2% and F1-score is increased by 1.0%.The computation cost of lane detection model is significantly reduced while maintaining high accuracy.

Key words: Computer vision, Convolution neural network, Lane detection, Lane segmentation, Lightweight model

中图分类号: 

  • TP391
[1]ALY M.Real time detection of lane markers in urban streets[C]//2008 IEEE Intelligent Vehicles Symposium.IEEE,2008:7-12.
[2]GOPALAN R,HONG T,SHNEIERM,et al.A learning ap-proach towards detection and tracking of lane markings[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(3):1088-1098.
[3]PAN X,SHI J,LUO P,et al.Spatial as deep:Spatial cnn for traffic scene understanding[J].arXiv:1712.06080,2017.
[4]CHEN Z,LIU Q,LIAN C.PointLaneNet:Efficient end-to-endCNNs for Accurate Real-Time Lane Detection[C]//2019 IEEE Intelligent Vehicles Symposium (IV).IEEE,2019:2563-2568.
[5]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Springer,Cham,2015:234-241.
[6]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[7]WANG P,CHEN P,YUAN Y,et al.Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision (WACV).IEEE,2018:1451-1460.
[8]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[9]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[10]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848.
[11]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[3] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[4] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[5] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[6] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[7] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[8] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[9] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[10] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[11] 张嘉淏, 刘峰, 齐佳音.
一种基于Bottleneck Transformer的轻量级微表情识别架构
Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer
计算机科学, 2022, 49(6A): 370-377. https://doi.org/10.11896/jsjkx.210500023
[12] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[13] 孙洁琪, 李亚峰, 张文博, 刘鹏辉.
基于离散小波变换的双域特征融合深度卷积神经网络
Dual-field Feature Fusion Deep Convolutional Neural Network Based on Discrete Wavelet Transformation
计算机科学, 2022, 49(6A): 434-440. https://doi.org/10.11896/jsjkx.210900199
[14] 杨涵, 万游, 蔡洁萱, 方铭宇, 吴卓超, 金扬, 钱伟行.
基于步态分类辅助的虚拟IMU的行人导航方法
Pedestrian Navigation Method Based on Virtual Inertial Measurement Unit Assisted by GaitClassification
计算机科学, 2022, 49(6A): 759-763. https://doi.org/10.11896/jsjkx.211200148
[15] 杨玥, 冯涛, 梁虹, 杨扬.
融合交叉注意力机制的图像任意风格迁移
Image Arbitrary Style Transfer via Criss-cross Attention
计算机科学, 2022, 49(6A): 345-352. https://doi.org/10.11896/jsjkx.210700236
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!