基于边缘计算的输变电工程全环节单元确认的精准造价智能管控技术研究

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 688-692.doi: 10.11896/jsjkx.201100200

• 交叉& 应用 • 上一篇    下一篇

基于边缘计算的输变电工程全环节单元确认的精准造价智能管控技术研究

栾凌1, 潘连武2, 闫雷2, 武小琳2   

  1. 1 国网辽宁省电力有限公司沈阳供电公司 沈阳110000
    2 国网辽宁省电力有限公司 沈阳110006
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 栾凌(Luanling19780225@163.com)
  • 基金资助:
    国家电网有限公司科技项目(SGLNSY00HLJS2002775)

Research on Intelligent Control Technology of Accurate Cost for Unit Confirmation in All Links of Power Transmission and Transformation Project Based on Edge Computing

LUAN Ling1, PAN Lian-wu2, YAN Lei2, WU Xiao-lin2   

  1. 1 Shenyang Power Supply Company of State Grid Liaoning Electric Power Company Limited,Shenyang 110000,China
    2 State Grid Liaoning Electric Power Company Limited,Shenyang 110006,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LUAN Ling,born in 1978,BE,deputy senior economist.Her main research interests include intelligent cost control and edge computing.
  • Supported by:
    Science and Technology Project of State Grid Corporation of China(SGLNSY00HLJS2002775).

摘要: 为进一步提高输变电工程造价管理的精细化水平,对输变电工程全环节单元确认的精准造价管控技术进行了深入研究。首先,针对缺乏精准计量方式、缺乏成熟管控技术以及各环节单元口径协调难等现存问题进行了细致分析。然后,构建了基于边缘计算的输变电工程全环节单元确认的精准造价智能管控模型,并且采用基于混合策略的免疫粒子群算法对其模型进行优化求解。使用边缘计算搭建输变电工程各环节的造价计算模型极大地缩短了计算延迟时间,降低了数据冗余成本。最后,采用免疫粒子群算法对模型进行优化,摆脱了传统优化算法易陷于局部最优的缺点,使得模型数据处理更高效性、更精准,进一步实现了边缘计算协同的高可靠性优势,实现了高精度的全环节各单元的造价管控体系。

关键词: 边缘计算, 免疫粒子群算法, 输变电工程, 造价智能管控

Abstract: In order to further improve the refinement level of the cost management of power transmission and transformation projects,the precise cost control technology confirmed by the whole link unit of power transmission and transformation projects is studied in-depth.First of all,the existing problems such as the lack of accurate measurement method,lack of mature control technology and the difficulty in coordinating the caliber of each link unit are analyzed in detail.Then,the intelligent control model of accurate cost of the whole link unit confirmation of power transmission and transformation project based on edge computing is constructed.The model is optimized by immune particle swarm optimization algorithm based on hybrid strategy.The cost calculation model of each link of power transmission and transformation project built by edge computing greatly shortens the calculation delay time and reduces the cost of data redundancy.Finally,immune particle swarm optimization algorithm is adopted to optimize the model to get rid of the disadvantage that traditional optimization algorithm is easy to fall into local optimal.Immune particle swarm optimization makes model data processing more efficient and accurate.The algorithm further realizes the advantage of high reliability of edge computing collaboration,and realizes the high precision cost control system of each unit in the whole link.

Key words: Edge computing, Immune particle swarm optimization, Intelligent cost control, Power transmission and transformation project

中图分类号: 

  • TP391
[1]LI Y,LI Q.The Application of BIM Technology in Budget Control of Port Construction Cost[J].Journal of Coastal Research,2020,103:644-648.
[2]TAO Q,GU C Q,WANG Z Y,et al.An intelligent clustering algorithm for high-dimensional multiview data in big data applications[J].Neurocomputing,2020,393:234-244.
[3]HASHMI S A,ALI C F,ZAFAR S.Internet of things and cloud computing-based energy management system for demand side management in smart grid[J].International Journal of Energy Research,2020,45(1):1007-1022.
[4]HIRSCHING C,GOERTZ M,WENIG S,et al.On control and balancing of rigid bipolar MMC-HVdc links enabling subsystem-independent power transfer[J].Electric Power Systems Research,2020,189:106768.
[5]CHAKRABORTY D,ELHEGAZY H,ELZARKA H,et al.A novel construction cost prediction model using hybrid natural and light gradient boosting[J].Advanced Engineering Informa-tics,2020,46:101201.
[6]MAO L C,YUN H.Application of a modified CES productionfunction model based on improved PSO algorithm[J].Applied Mathematics and Computation,2020,387:125178.
[7]ROSTAMI M,FOROUZANDEH S,BERAHMAND K,et al.Integration of multi-objective PSO based feature selection and node centrality for medical datasets[J].Genomics,2020,122(6):4370-4384.
[8]KARASEKRETER N,BAIFTI F,FIDAN U,et al.PSO Based Clustering for the Optimization of Energy Consumption in Wireless Sensor Network[J].Emerging Materials Research,2020,9(3):1-7.
[9]RAHMAN I U,ZAKARYA M,RAZA M,et al.An n-stateswitching PSO algorithm for scalable optimization[J].Soft Comput,2020,24:11297-11314.
[10]WANG Y Z,WANG L D,YAN X,et al.Fuzzy immune particle swarm optimization algorithm and its application in scheduling of MVB periodic information[J].Journal of Intelligent & Fuzzy Systems,2016,32(6):3797-3807.
[11]FENG H,GUO S,ZHU A,et al.Energy-efficient User Selection and Resource Allocation in Mobile Edge Computing[J].Ad Hoc Networks,2020,107:102202.
[12]LU W,XU X,YE Q,et al.Power Optimization in UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing Systems[J].IET Communications,2020,14(15):2516-2523.
[13]LIN H,ZEADALLY S,CHEN Z H,et al.A survey on computation offloading modeling for edge computing[J].Journal of Network and Computer Applications,2020,169:102781.
[14]LV Z,QIAO L.Optimization of collaborative resource allocation for mobile edge computing[J].Computer Communications,2020,161:19-27.
[15]RAUSCH T,RASHED A,DUSTDAR S.Optimized containerscheduling for data-intensive serverless edge computing[J].Future Generation Computer Systems,2021,114:259-271.
[1] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[4] 袁昊男, 王瑞锦, 郑博文, 吴邦彦.
基于Fabric的电子病历跨链可信共享系统设计与实现
Design and Implementation of Cross-chain Trusted EMR Sharing System Based on Fabric
计算机科学, 2022, 49(6A): 490-495. https://doi.org/10.11896/jsjkx.210500063
[5] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[6] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[7] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[8] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[9] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[10] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[11] 林潮伟, 林兵, 陈星.
边缘环境下基于模糊理论的科学工作流调度研究
Study on Scientific Workflow Scheduling Based on Fuzzy Theory Under Edge Environment
计算机科学, 2022, 49(2): 312-320. https://doi.org/10.11896/jsjkx.201000102
[12] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[13] 薛艳芬, 高继梅, 范贵生, 虞慧群, 许亚杰.
边缘计算中基于能耗感知的容错协同任务执行算法
Energy-aware Fault-tolerant Collaborative Task Execution Algorithm in Edge Computing
计算机科学, 2021, 48(6A): 374-382. https://doi.org/10.11896/jsjkx.200900027
[14] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[15] 钱甜甜, 张帆.
基于分布式边缘计算的情绪识别系统
Emotion Recognition System Based on Distributed Edge Computing
计算机科学, 2021, 48(6A): 638-643. https://doi.org/10.11896/jsjkx.201000010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!