计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 308-313.doi: 10.11896/jsjkx.201100044
姚楠, 张征
YAO Nan, ZHANG Zheng
摘要: 目前法医鉴定受伤疤痕面积主要采用人工的方式,其存在一定的不稳定性和时耗问题。因此,提出了基于三维图像的疤痕面积计算的法医鉴定方法。首先使用三维激光扫描仪获取待鉴定皮肤的三维图像数据;其次对数据进行预处理,除去背景环境部分以及噪点,同时通过下采样调整点云分辨率;然后使用颜色区域生长方法,对伤疤进行自动区域分割,并辅以人工交互以调整目标疤痕区域;最后利用曲面重建后的目标区域来计算疤痕面积。实验结果表明,所提方法与当前法医数字化处理方法相比,误差保持在5%以内,耗时减少了20%以上。
中图分类号:
[1]QI L,LI P,JIN B,et al.Application of three-dimensional meas-urement technology in identification of human injury degree[J].Chinese Journal of Forensic Medicine,2019,34 (2):165-167,164. [2]LASSCHUIT J W J,FEATHERSTON J,TONKS K T T.Reliability of a Three-Dimensional Wound Camera and Correlation With Routine Ruler Measurement in Diabetes-Related Foot Ulceration[J/OL].Journal of Diabetes Science and Technology,2020. https://www.researchgate.net/publication/347201083_Reliability_of_a_Three-Dimensional_Wound_Camera_and_Correlation_With_Routine_Ruler_Measurement_in_Diabetes-Related_Foot_Ulceration. [3]TAN L.Automatic Assessment of Burn AreaBased on 3D Human Surface Reconstruction Technology[J].Shanghai:Donghua University,2014. [4]SHENG W,ZENG D,WAN Y,et al.BurnCalc assessment study of computer-aided individual three-dimensional burn area calculation[J].Journal of Translational Medicine,2014,12(1):242. [5]LU J,WANG L,ZHANG Y C,TANG H T,XIA Z F.Clinical application effect of burncalc 3D scanning system in burn wound area evaluation[J].Chinese Journal of Burns,2017,33 (10):597-601. [6]YAO L,DONG G S,TANG H T,et al.The application of athree-dimensional human body surface imaging technique in the estimation of human burn area[J].Journal of Donghua University:Natural Science Edition,2015,41(1):84-90. [7]YANG H J.Application of multi-slice spiral CT three-dimensional reconstruction in diagnosis of rib fracture and forensic clinical identification[J].Legal system Expo,2020 (8):155-156. [8]FU J Q.Preliminary study on three-dimensional measurement of injured scar surface with structured light[D].Huazhong:Huazhong University of Science and Technology,2016. [9]NIU C G,LIU Y J,LI Z M,et al.Three-dimensional target recognition and modelsegmentation method based on point cloud data[J].Journal of Graphics,2019,40(2):274-281. [10]QI C R,SU H,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:652-660. [11]QI C R,YI L,SU H,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space[J].Advances in Neural Information Processing Systems,2017,30:5099-5108. [12]ZABIHOLLAHY F,WHITE J A,UKWATTA E.Convolutional neural network-based approach for segmentation of left ventricle myocardial scar from 3D late gadolinium enhancement MR images[J].Medical Physics,2019,46(4):1740-1751. [13]LASSCHUIT J W J,FEATHERSTON J,TONKS K T T.Reliability of a Three-Dimensional Wound Camera and Correlation With Routine Ruler Measurement in Diabetes-Related Foot Ulceration[J].Journal of Diabetes Science and Technology,2020:193229682097465. [14]TONG J.Scanning and reconstruction of 3D object and human body based on depth camera[J].Zhejiang University,2012. [15]HU P P.Development of 3-d scanning system based on RGBD depth camera and research on multi-suit Simulation Algorithm[J].Donghua University,2017. [16]GUO H,SU W,ZHU D H,et al.Point cloud library PCL from entry to proficiency[M].Machinery Industry Press:Xi'an,2019:100-120. [17]KAZHDAN M,BOLITHO M,HOPPE H.Poisson surface reconstruction[C]//Proceedings of the Fourth Eurographics Symposium on Geometry Processing.2006,7. [18]HUANG P,ZHENG Q,LIANG C.Overview of image segmentation methods[J].Journal of Wuhan University (Science Edition),2020,66(6):519-531. [19]ALHARAN A F H,FATLAWI H K,ALI N S.A cluster-based feature selection method for image texture classification[J].Indonesian Journal of Electrical Engineering and Computer Ence,2019,14(3):1433-1442. [20]YAO L,CHENG Y R,WU H.Three-dimensional area measurement based on grid model[J].Software Guide,2016,15(2):98-101. |
[1] | 卢用煌,黄山. 基于自适应角度的三维点云分割方法 3D Point Cloud Segmentation Method Based on Adaptive Angle 计算机科学, 2017, 44(Z11): 166-168. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.034 |
[2] | 徐利敏,吴刚. 点云数据集的隐式曲面重构研究进展 Review of Implicit Surface Reconstruction from Point Cloud Dataset 计算机科学, 2017, 44(Z11): 19-23. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.003 |
[3] | 秦绪佳,陈楼衡,谭小俊,郑红波,张美玉. 结构光视觉三维点云逐层三角网格化算法 Layer by Layer Triangulation Algorithm for 3D Point Clouds from Structured Light Vision 计算机科学, 2016, 43(Z11): 383-387. https://doi.org/10.11896/j.issn.1002-137X.2016.11A.088 |
[4] | 邱春丽,许宏丽. 一种散乱点云空间直接剖分算法 Direct Triangulation Algorithm for Three-dimensional Scattered Points 计算机科学, 2014, 41(2): 157-160. |
[5] | 王明福,周勇. 基于Voxel编码的曲面重建 Voxel-coding for Surface Reconstruction from Contours 计算机科学, 2009, 36(7): 32-39. https://doi.org/10.11896/j.issn.1002-137X.2009.07.006 |
[6] | 王树忠 张佑生. 基于散乱点集的曲面重建 计算机科学, 2009, 36(5): 269-272. |
|