机器学习在脊柱疾病智能诊治中的应用综述

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 597-607.doi: 10.11896/jsjkx.201100006

• 交叉& 应用 • 上一篇    下一篇

机器学习在脊柱疾病智能诊治中的应用综述

刘彤彤1, 杨环1, 西永明2, 郭建伟2, 潘振宽1, 黄宝香1   

  1. 1 青岛大学计算机科学技术学院 青岛266071
    2 青岛大学附属医院脊柱外科 青岛266000
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 杨环(cathy_huanyang@hotmail.com)
  • 作者简介:ttong_liu@163.com
  • 基金资助:
    国家自然科学基金青年项目(61602269);中国博士后科学基金(2017M622136);山东省重点研发计划(公益类专项)(2019GGX101021)

Review on Intelligent Diagnosis of Spine Disease Based on Machine Learning

LIU Tong-tong1, YANG Huan1, XI Yong-ming2, GUO Jian-wei2, PAN Zhen-kuan1, HUANG Bao-xiang1   

  1. 1 College of Computer Science and Technology,Qingdao University,Qingdao 266071,China
    2 The Affiated Hospital of Qingdao University Spine Surgery,Qingdao 266000,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:LIU Tong-tong,born in 1997,postgra-duate.Her main research interests include machine learning and medical data mining.
    YANG Huan,born in 1985,Ph.D,associate professor,postgraduate supervisor,is a member of China Computer Federation.Her main research interests include image/video processing and ima-ge quality assessment.
  • Supported by:
    National Science Foundation for Young Scientists of China (61602269),China Postdoctoral Science Foundation(2017M622136) and Key R & D Program of Shandong Province(2019GGX101021).

摘要: 脊柱疾病是现代社会中常见疾病之一,目前其诊断与治疗主要依赖于医生的专业水平和临床经验,这样不仅给医生带来沉重负担,而且效率低下。以神经网络为代表的机器学习算法能够自动提取脊柱数据集中的特征信息,辅助医生快速定位病灶区域,实现精准治疗。文中从实验数据、特征选择、算法模型和性能评估指标等方面,对机器学习技术在脊柱疾病应用中的研究现状进行了系统总结。首先从机器学习算法角度出发,阐述典型算法在疾病诊治中的用途;其次围绕实际应用,从危险因素分析和疾病预测、疾病识别和分类、脊柱图像的特征提取和分割3方面,结合具体实验对比机器学习模型的性能;最后总结目前应用中存在的局限性并提出展望。

关键词: 机器学习, 脊柱疾病, 神经网络, 研究综述, 智慧医疗

Abstract: Spine diseases are prevalent in modern society.The diagnosis and treatment mainly depend on doctors' professional knowledge and clinical experience.More and more patients and conventional treatments resulted in heavy overload and inefficient diagnosis.Machine learning algorithms can automatically extract useful information from datasets and images,assisting doctors to locate the lesion and carry out the accurate treatment.This paper focuses on the applications of machine learning in the field of spine disease and summarizes the relevant research from aspects of datasets,feature selection,model,evaluation metrics,and so on.Firstly,in terms of machine learning algorithms,the utility of some typical algorithms in disease diagnosis and treatment is described.Moreover,in terms of the actual applications of disease diagnosis and treatment(risk factor analysis and disease prediction,disease recognition and classification,feature extraction of spine image and image segmentation),the performances of several important models are compared in some specific experiments.Accuracy,specificity,sensitivity,AUC,and other evaluation indexes are involved.Finally,the major limitations and corresponding issues in current applications are summarized.

Key words: Machine learning, Neural network, Review, Smart health-care, Spine disease

中图分类号: 

  • TP399
[1]YUAN L L,ZHANG B Z,DU Q.Analysis of inpatients with Spine disease in children and adolescents[J].School Health in China,2013,34(2):178-180.
[2]FENG J F,YU J.Foreword of the frontier progress of artificial intelligence[J].Journal of Computer Research and Development,2019,560(8):1604-1604.
[3]YU H L,GU G C,ZHAO J.State of the art on cancer classification problems based on DNA microarray Data[J].Computer Sci-ence,2010,370(10):22-28,38.
[4]ZHENG X Y.Research on cardiovascular disease prediction system Based on machine learning[D].Beijing:Beijing Jiaotong University,2018.
[5]RUCZINSKI I,LEBLANC K M.Logic Regression[J].Journal of Computational and Graphical Statistics,2003,12(3):475-511.
[6]LEBL D R,BONO C,VELMAHOS G,et al.Vertebral artery injury associated with blunt cervical spine trauma:a multivariate regression analysis[J].Spine,2013,380(16):1352-1361.
[7]TAKEMOTO M,BOISSIÈRE L,VITAL J M,et al.Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life[J].European Spine Journal,2017,260(8):2176-2186.
[8]XIA Q,XU J H,SHUAI Z W,et al.Ordinal Logistic regression analysis of influencing factors of disease activity in ankylosing spondylitis[J].Acta Universitatis Medicinalis Anhui,2016,510(12):1808-1812.
[9]WANG H P,SUN Z W,WANG Y H,et al.Prevalence and risk factors of adolescent idiopathic scoliosis in Kunming[J].Chinese Journal of School Health,2018,390(12):97-100.
[10]PASHA S,ECKER M,DEENEY V.Considerations in sagittalevaluation of the scoliotic spine[J].European Journal of Orthopaedic Surgery Traumatology,2018,280(2):1-7.
[11]PETER R,MALINSKY M,OUREDNICEK P,et al.spine data segmentation and analysis of vertebrae bone lesions[J].International Conference of the IEEE Engineering in Medicine and Biology Society.2013:2376-2379.
[12]VERMA S K,CHUN S,LIU B J.A web-based neurological pain classifier tool utilizing Bayesian decision theory for pain classification in spinal cord injury patients[C]//Medical Imaging 2014:PACS and Imaging Informatics:Next Generation and Innovations.International Society for Optics and Photonics,2014,9039:90390E.
[13]ALOMARI R S,CORSO J J,CHAUDHARY V,et al.Lumbar spine disc herniation diagnosis with a joint shape model[C]//Computational Methods and Clinical Applications for Spine Imaging.Springer,2014:87-98.
[14]MANDAL I.Developing new machine learning ensembles forquality spine diagnosis[J].Knowledge-Based Systems,2015,730(Jan.):298-310.
[15]WIESE T,BURNS J,YAO J,et al.Computer-aided detection of sclerotic bone metastases in the spine using watershed algorithm and support vector machines[C]//IEEE International Symposium on Biomedical Imaging:from Nano to Macro.2011.
[16]BURNS J E,YAO J,WIESE T S,et al.Automated detection of sclerotic metastases in the thoracolumbar spine at CT[J].Radio-logy,2013,2680(1):69-78.
[17]RAMIREZ L,DURDLE N G,RASOV J,et al.A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topography[J].IEEE Transactions on Information Technology in Biomedicine,2006,100(1):84-91.
[18]TAN Z Q.Algorithmic study of Lenke classification of idiopa-thic scoliosis based on U-net[M].Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences),2019.
[19]JIANG N,LUK K D,HU Y.A machine learning-based surface electromyography topography evaluation for prognostic prediction of functional restoration rehabilitation in chronic low back pain[J].Spine,2017,42(21):1635-1642.
[20]LECRON F,BENJELLOUN S,MOHAMMED S.Cervical spine mobility analysis on radiographs:A fully automatic approach[J].Computerized Medical Imaging Graphics,2012,360(8):634-642.
[21]YU S,TAN K K,SNG B L,et al.Feature extraction and classification for ultrasound images of lumbar spine with support vector machine[C]//Conf.Proc.IEEE Eng.Med.Biol.Soc..2014:2014:4659-4662.
[22]WANG Z,ZHEN X,TAY K,et al.Regression segmentation for m3 spinal images[J].IEEE Transactions on Medical Imaging,2015,340(8):1640-1648.
[23]WANG S,HU Y,SHEN Y,et al.Classification of diffusion tensor metrics for the diagnosis of a myelopathic cord using machine learning[J].International Journal of Neural Systems,2018,28:17500364.
[24]QUINLAN J.Induction on decision tree[J].Machine Learning,1986,1.
[25]PHAN P,MEZGHANI N,MARIE-LYNE N,et al.A decision tree can increase accuracy when assessing curve types according to lenke classification of adolescent idiopathic scoliosis[J].Spine,2010,350(10):1054-1059.
[26]HANNON M,MANNIX R,DORNEY K,et al.Pediatric cervical spine injury evaluation after blunt trauma:A clinical decision analysis[J].Annals of Emergency Medicine,2014,650(3):239-247.
[27]HUANG S H,CHU Y H,LAI S H,et al.Learning-based verte-bra detection and iterative normalized-cut segmentation for spinal MRI[J].IEEE Transactions on Medical Imaging,2009,280(10):1595-1605.
[28]ZHAN Y,MANEESH D,HARDER M,et al.Robust spine detection using hierarchical learning and local articulated model[C]//Proceedings of the 15th International Conference on Medical Image Computing and Computer-Assisted Intervention- Volume Part I.2012.
[29]ARIF S M M R A,ASAD M,KNAPP K,et al.Cervical vertebral corner detection using haar-like features and modified hough forest[C]//2015 International Conference on Image Processing Theory,Tools and Applications (IPTA).2015.
[30]KOREZ R,IBRAGIMOV B,LIKAR B,et al.Interpolation-based shape-constrained deformable model approach for segmentation of vertebrae from CT spine images[C]//Recent Advances in Computational Methods and Clinical Applications for Spine Imaging.Springer,Cham,2015:235-240.
[31]CHENG E,LIU Y,WIBOWO H,et al.Learning-based spine vertebra localization and segmentation in 3D CT image[C]//2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).IEEE,2016:160-163.
[32]TAO Y P,JING Y,XU C.IVertebra CT Segmentation Method Based on Random Forest and Chan Vese[J].Journal of Chinese Mini-Micro Computer Systems,2019,400(6):1336-1339.
[33]EBRAHIMI S,GAJNY L,SKALL W,et al.Vertebral corners detection on sagittal x-rays based on shape modelling,random forest classifiers and dedicated visual features[J].Computer Methods in Biomechanics and BIO,2019,70(1/2):134-146.
[34]JEBRI B,PHILLIPS M,KNAPP K,et al.Detection of degenerative change in lateral projection cervical spine x-ray images[C]//Medical Imaging 2015:Computer-Aided Diagnosis:volume 9414.International Society for Optics and Photonics,2015:941404.
[35]BROMILEY P A,KARIKI E P,ADAMSJ E,et al.Fully automatic localisation of vertebrae in CT images using random forest regression voting[C]//International Workshop on Computational Methods and Clinical Applications for Spine Imaging.2016.
[36]LIN X H.The study of key features extraction and quantization of spinal image in computer-aided clinical diagnosis[M].Xiamen:Huaqiao University.
[37]BAKA N,LEENSTRA S,WALSUM T V.Random forest-based bone segmentation in ultrasound[J].Ultrasound in Medicine Biology,2017,430(10):2426-2437.
[38]DOMINIK G,PAWE G,TOMASZ K,et al.Automatic spine tissue segmentation from mri data based on cascade of boosted classifiers and active appearance model[J].Biomed Research International,2018,2018:1-13.
[39]JIA W H.Research on Auciliary Diagnosis Model of Orthopedics Based on XGBoost Algorithm[D].Taiyuan:Taiyuan University of Technology,2008.
[40]CHEN M J.Preliminary study on risk prediction model of idiopathc scoliosis[D].Shanghai:Shanghai University of Sport,2019.
[41]BERTSIMAS D,MASIAKOS P T,MYLONASK S,et al.Prediction of cervical spine injury in young pediatric patients:an optimal trees artificial intelligence approach[J].Journal of pediatric surgery,2019,540(11):2353-2357.
[42]MA R.Principle of Artificial Neural Network[M].Beijing:China Machine Press,2010.
[43]ZHANG R,LI J T.A Survey on Algorithm Research of Scene Parsing Based on Deep Learning[J].Journal of Computer Research and Development,2020,570(4):859-875.
[44]ZHONGYI H,BENZHENG W,ASHLEY M,et al.Spine-Gan:Semantic segmentation of multiple spinal structures[J].Medical Image Analysis,2018,50:23-35.
[45]SEKUBOYINA A,KUKAČKA J,KIRSCHKE J S,et al.Attention-driven deep learning for pathological spine segmentation[C]//International Workshop Challenge on Computational Methods Clinical Applications in Musculoskeletal Imaging.2017.
[46]LEE H,TROSCHEL F M,TAJMIR S,et al.Pixel-level deep segmentation:artificial intelligence quantifies muscle on computed tomography for body morphometric analysis[J].Journal of Digital Imaging,2017,300(4):487-498.
[47]LIU Z L,CHEN G,SHAN Z Y,et al.Segmentation of Spine ct image based on deep learning[J].Computer Applications and Software,2018,350(10):206-210,279.
[48]LI X,HE J.Application of 3D Fully Convolution Network in Spine Segmentation[J].Electronic Science and Technology,2018,310(11):79-83.
[49]ZHOU W,LIN L,GE G.N-net:3D fully convolution network based vertebrae segmentation from CT spinal images[J].International Journal of Pattern Recognition Artificial Intelligence,2019,33(6):1957003.
[50]HORNG M H,KUOK C P,FU M J,et al.Cobb angle measurement of spine from X-ray images using convolutional neural network[J].Computational Mathematical Methods in Medicine,2019,2019:1-18.
[51]LESSMANN N,VAN GINNEKEN B,DE JONG P A,et al.Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J].Medical Image Analysis,2019,53:142-155.
[52]KIM S,BAE W,MASUDA K,et al.Fine-grain segmentation of the intervertebral discs from mr spine images using deep convolutional neural networks:Bsu-net[J].Applied Sciences(Basel),2018,80(9):1656-1669.
[53]ARIF S M M R A,KNAPP K,SLABAUGH G.Fully automatic cervical vertebrae segmentation framework for x-ray images[J].Computer Methods Programs in Biomedicine,2018,157:95-111.
[54]SAIKUMAR K,RAJESH V,RAMYA N,et al.A deep learning process for spine and heart segmentation using pixel-based convolutional networks[J].Journal of International Pharmaceutical Research,2019,460(1):278-282.
[55]LIU X.Research on CT Image Segmentation algorithm Based on Concatenated Convolutional Neural Network[D].Harbin:Harbin University of Science and Technology,2019.
[56]HAO C,SHEN C,JING Q,et al.Automatic localization andidentification of vertebrae in spine CT via a joint learning model with deep neural networks[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Springer,Cham,2015:515-522.
[57]HETHERINGTON J,LESSOWAY V,GUNKA V,et al.Slide:automatic spine level identification system using a deep convolutional neural network[J].International Journal of Computer Assisted Radiology Surgery,2017,120(7):1189-1198.
[58]FORSBERG D,SJBLOM E,SUNSHINE J L.Detection and labeling of vertebrae in mr images using deep learning with clinical annotations as training data[J].Journal of Digital Imaging,2017,300(4):406-412.
[59]BELHARBI S,CHATELAIN C,HÉRAULT R,et al.Spotting L3 slice in CT scans using deep convolutional network and transfer learning[J].Computers in Biology Medicine,2017,87:95-103.
[60]HAN Z,WEI B,LEUNG S,et al.Automated pathogenesis-based diagnosis of lumbar neural foraminal stenosis via deep multiscale multitask learning[J].Neuroinformatics,2018,160(3/4):325-337.
[61]GALBUSERA F,NIEMEYER F,WILKE H J,et al.Fully automated radiological analysis of spinal disorders and deformities:a deep learning approach[J].European Spine Journal,2019,280(5):951-960.
[62]CHERUKURI M,STANLEY R,LONG R,et al.Anterior osteophyte discrimination in lumbar vertebrae using size-invariant features[J].Computerized Medical Imaging Graphics,2014,280(1/2):99-108.
[63]ROTH H,YAO,LU L,et al.Detection of sclerotic spine metastases via random aggregation of deep convolutional neural network classifications[C]//Recent Advances in Computational Methods and Clinical Applications for Spine Imaging.Springer,Cham,2015:3-12.
[64]ROTH H R,WANG Y,YAO J,et al.Deep convolutional networks for automated detection of posterior-element fractures on spine CT[C]//Medical Imaging 2016:Computer-Aided Diagnosis.International Society for Optics and Photonics,2016:97850P.
[65]AZIMI P,MOHAMMADI H R,BENZEL E C,et al.Use of artificial neural networks to predict recurrent lumbar disk herniation.Journal of Spinal Disorders Techniques,2015,280(3):E161-E165.
[66]AZIMI P,BENZEL E C,SHAHZADI S,et al.Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis:clinical article[J].J.Neurosurg Spine,2014,200(3):300-305.
[67]KIM J S,MERRILL R K,ARVIND V,et al.Examining theability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion[J].Spine,2018,430(12):853.
[68]JAMALUDIN A,LOOTUS M,KADIR T,et al.Issls prize in bioengineering science 2017:Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist[J].European Spine Journal,2017,260(5):1374-1383.
[69]WANG J,FANG Z,LANG N,et al.A multi-resolution approach for spinal metastasis detection using deep siamese neural networks[J].Computers in Biology Medicine,2017,84:137-146.
[70]HU B,KIM C,NING X,et al.Using a deep learning network to recognize low back pain in static standing[J].Ergonomics,2018,610(10):1374-1381.
[71]XUE Z,RAJARAMAN S,LONG R,et al.Gender detectionfrom spine x-ray images using deep learning[C]//2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS).IEEE,2018:54-58.
[72]STAARTJES V,DE WISPELAERE M,VANDERTOP W,et al.Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar diskectomy:Feasibility of center-specific modelling[J].The Spine Journal,2019,190(5):853-861.
[73]CHMELIK J,JAKUBICEK R,JAN J,et al.Fully automaticCAD system for segmentation and classification of spinal metastatic lesions in CT data[C]//World Congress on Medical Physics and Biomedical Engineering 2018.2019.
[74]SONG Y Q,XIE C H,ZHU Y Q,et al.Research on Medical Image Clustering Based on Approximate Density Function[J].Journal of Computer Research and Development,2006,20060(11):1947-1952.
[75]DUONG L,CHERIET F,LABELLE H.Three-dimensionalclassification of spinal deformities using fuzzy clustering[J].Spine,2006,310(8):923-930.
[76]AMES C P,SMITH J S,PELLISÉ F,et al.Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery:towards a new classification scheme that predicts quality and value[J].Spine,2019,440(13):915-926.
[77]BEAUDETTE S M,ZWAMBAG D P,GRAHAM R B,et al.Discriminating spatiotemporal movement strategies during spine flexion-extension in healthy individuals[J].The Spine Journal,2019,19(7):1264-1275.
[78]RIVEROS N A M,ESPITIA B A C,PICO L E A.Comparison between K-means and self-organizing maps algorithms used for diagnosis spinal column patients[J].Informatics in Medicine Unlocked,2019,16:100206.
[79]ATHERTYA J,KUMAR G S.Fuzzy clustering based segmentation of vertebrae in T1-weighted spinal MR images[J].Computer Vision and Pattern Recognition,2016,60(2):23-34.
[80]YE W,TAO J,CHEN X Y,et al.Study of A Novel Automatic Segmentation Algorithm for MR Spine Image[J].China Medical Devices,2018,330(9):61-64.
[81]WAGNER C S,LEYDESDORFF L.Network structure,self-organization,and the growth of international collaboration in science[J].Research Policy,2005,34(10):1608-1618.
[82]PHAN P,MEZGHANI N,WAI E K,et al.Artificial neural networks assessing adolescent idiopathic scoliosis:comparison with Lenke classification[J].Spine Journal,2013,130(11):1527-1533.
[83]ABDULLAH A A,YAAKOB A,IBRAHIM Z.Prediction ofspinal abnormalities using machine learning techniques[C]//2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA).IEEE,2018:1-6.
[84]ZHANG L,ZHAO J,YANG H,et al.Unsupervised scoliosis diagnosis via a joint recognition method with multifeature descriptors and centroids extraction[J].Computational Mathematical Methods in Medicine,2018,2018:1-14.
[85]DEVRIES Z,HODA M,RIVERS C S,et al.Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients[J].The Spine Journal,2020,200(2):213-224.
[86]HAO S J,ZHAN S,JIANG J G.Spine Disc MR Image Analysis Using Improved Independent Component Analysis Based Active Appearance Model and Markov Random Field[J].Journal of Biomedical Engineering,2010,10(27):12-15,21.
[87]CAI Y,LANDIS M,LAIDLEY D T,et al.Multi-modal vertebrae recognition using transformed deep convolution network[J].Computerized Medical Imaging Graphics,2016,51:11-19.
[88]PATRICK J,INDU M G.A semi-automated technique for vertebrae detection and segmentation from CT images of spine[C]//2016 International Conference on Communication Systems and Networks (ComNet).2016.
[89]SMYTH P P,TAYLOR C J,ADAMS J E.Vertebral shape:automatic measurement with active shape models[J].Radiology,1999,2110(2):571-578.
[90]TAO X U,CAI Y X.Localization of object (spine) in medical image using active shape models[J].Journal of Nanjing University of Aeronautics & Astronautics,2003,2003(2):211-217.
[91]SEOUD L,ADANKON M M,LABELLE H,et al.Towards non invasive diagnosis of scoliosis using semi-supervised learning approach[C]//Image Analysis Recognition,International Conference.Iciar,Póvoa De Varzim,Portugal,June,Part II.2010.
[92]KANG Y.Research and Application of Auxiliary DiagnosisMethod Based on Amplified Collaborative Classification of Small Sample Clinical Data[D].Xi’an:Xidian University,2019.
[93]WANG S H,TANG C,SUN J.Multiple sclerosis identification by 14-layer convolutional neural network with batch normalization,dropout,and stochastic pooling[J].Frontiers in Neuroscience,2018,12:818.
[94]NIJEWEME-D’HOLLOSY W O,VAN VELSENL,POEL M.Evaluation of three machine learning models for self-referral decision support on low back pain in primary care[J].International Journal of Medical Informatics,2018,1100(FEB.):31-41.
[95]BEDI R,SHARMAA S.Classification algorithms for prediction of lumbar spine pathologies[C]//International Conference on Advanced Informatics for Computing Research.2017:42-50.
[1] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[2] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[3] 冷典典, 杜鹏, 陈建廷, 向阳.
面向自动化集装箱码头的AGV行驶时间估计
Automated Container Terminal Oriented Travel Time Estimation of AGV
计算机科学, 2022, 49(9): 208-214. https://doi.org/10.11896/jsjkx.210700028
[4] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[5] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[6] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[7] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[8] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[9] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[10] 王润安, 邹兆年.
基于物理操作级模型的查询执行时间预测方法
Query Performance Prediction Based on Physical Operation-level Models
计算机科学, 2022, 49(8): 49-55. https://doi.org/10.11896/jsjkx.210700074
[11] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[12] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[13] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[14] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[15] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!