多尺度U网络实现番茄叶部病斑分割与识别

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 360-366.doi: 10.11896/jsjkx.201000166

• 图像处理& 多媒体技术 • 上一篇    下一篇

多尺度U网络实现番茄叶部病斑分割与识别

顾兴健, 朱剑峰, 任守纲, 熊迎军, 徐焕良   

  1. 南京农业大学人工智能学院 南京210095
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 任守纲(rensg@njau.edu.cn)
  • 作者简介:guxingjian@njau.edu.cn
  • 基金资助:
    国家自然科学基金(61806097)

Multi-scale U Network Realizes Segmentation and Recognition of Tomato Leaf Disease

GU Xing-jian, ZHU Jian-feng, REN Shou-gang, XIONG Ying-jun, XU Huan-liang   

  1. School of Artificial Intelligence,Nanjing Agricultural University,Nanjing 210095,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:GU Xing-jian,born in 1985,Ph.D,lecturer,is a member of China Computer Federation.His main research interests include machine learning and pattern recognition.
    REN Shou-gang,born in 1977,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include big data analysis and agricultural information.
  • Supported by:
    National Natural Science Foundation of China(61806097).

摘要: 随着深度学习技术的迅速发展,卷积神经网络成为研究植物叶部病害识别与病斑分割的主流方法。针对番茄叶部病斑大小不一、形状不规则、病斑分割需要大量像素级标记等问题,文中提出一种多尺度U网络,以同时实现番茄叶部病斑分割与病害识别。在病害特征提取阶段采用多尺度残差模块组合不同尺寸的感受野来提取病害特征,以适应病斑大小和形状的动态变化。引入CB模块(Classifier and Bridge)将病害特征提取阶段与病斑分割阶段连接,对病害特征进行分类,并根据分类结果反向映射出特定类的激活图,此激活图包含特定类别病斑的关键信息。在分割阶段采用上采样与卷积相结合的方法对特定类的激活图进行反卷积,利用跳跃连接方式将反卷积特征与低层特征融合,以补充更多的图像细节信息,获取病斑分割的灰度图。为了使分割的病斑定位更加精确,利用少量像素级标记,对每个像素点采用二分类交叉熵损失函数进行监督训练,同时更好地引导特征提取网络关注病斑部位。利用原始测试集与模拟噪声和光照强度的干扰测试集分别验证模型的病斑分割与病害分类性能。在原始测试样本集上多尺度U网络的平均像素准确率、平均交并比和频权交并比分别达到了86.15%,75.25%和90.27%;在降低30%亮度和添加椒盐噪声的干扰测试集上,模型的识别准确率分别为95.10%和99.20%。实验结果表明,所提方法可以实现番茄叶部病斑分割与识别效果的共同提升。

关键词: 多尺度, 卷积神经网络, 图像分割, 图像识别, 叶部病害

Abstract: With the development of deep learning technology,convolutional neural network has been the mainstream method for plant leaf disease recognition and disease spot segmentation.Aiming at the problems of different sizes and irregular shapes of tomato leaf lesions,need for a large number of pixel-level labels,a novel multi-scale U network is proposed,which realizes tomato leaf lesion segmentation and disease recognition simultaneously.For disease feature extraction,a multi-scale residual module including different sizes of receptive fields is used to extract disease features according to the different disease spot size and shape.The CB module (Classifier and Bridge) is introduced to connect the disease feature extraction stage with the lesion segmentation stage,which classifies the disease and also reversely generates an activation map of specific class according to the classification result.This activation map contains the specific type of lesions label information.In the segmentation stage,upsampling and convolution are used to deconvolve the activation map.The deconvolution feature and the low-level feature are merged by the jump connection method.In order to make lesion location segmentation more accurate,a few of pixel-level labels are used for training to minimize two-class cross-entropy loss.In the experiment,the original samples and samples with simulated noise and light intensity are used to verify the performance of disease spot segmentation and disease recognition of our method.On the original sample set,the average pixel accuracy,average intersection ratio,and frequency weight intersection ratio of our method reaches 86.15%,75.25%,and 90.27%,respectively.In the interference sample with 30% brightness reduction,salt and pepper noise,the recognition accuracy of our method obtains 95.10% and 99.20% respectively.Experimental results show that the proposed method can achieve improvement in segmentation and recognition of tomato leaf lesions simultaneously.

Key words: Convolutional neural network, Image recognition, Image segmentation, Leaf diseases, Multiscale

中图分类号: 

  • TP391
[1]WANG X Y,WEN H J,LI X X,et al.Analysis of research progress in detection and early warning technologies for major agricultural diseases[J].Journal of Agricultural Machinery,2016,47(9):266-277.
[2]PUJARI J D,YAKKUNDIMAT H.SVM and ANN Based Classification of Plant Diseases Using Feature Reduction Technique[J].INT J Interract Multi,2016,3(7):6-14.
[3]WANG D,CHAI X J.Application of machine learning in plant diseases recognition[J].Journal of Chinese Agricultural Mechanization,2019,40(9):171-180.
[4]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012,2:1097-1105.
[5]MOHANTY S P,HUGHES D P,MARCEL S.Using deeplearning for image-based plant disease detection[J].Frontiers in Plant Science,2016,7:1-10.
[6]SRDJAN S,MARKO A,ANDRAS A,et al.Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification[J].Computational Intelligence and Neuroscience,2016,2016:1-11.
[7]AMARA J,BOUAZIZ B,ALGERGAWY A.A deep learning-based approach for banana leaf diseases classification[J].Lecture Notes in Informatics (LNI),Proceedings- Series of the Gesellschaft fur Informatik (GI),2017,266:79-88.
[8]BRAHIMI M,BOUKHALFA K,MOUSSAOUI A.Deep Learning for Tomato Diseases:Classification and Symptoms Visualization[J].Applied Artificial Intelligence,2017,31 (4/5/6):1-17.
[9]FERENTINOS K.Deep learning models for plant disease detection and diagnosis[J].Computers and Electronics in Agriculture,2018(145):311-318.
[10]LIANG Q,XIANG S,HU Y,et al.PD2SE-Net:Computer-assisted plant disease diagnosis and severity estimation network[J].Computers and Electronics in Agriculture,2019,157:518-529.
[11]SUN J,TAN W J,MAO H P,et al.Recognition of multiple plant leaf diseases based on improved convolutional neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(19):209-215.
[12]GUO X Q,FAN T J,SHU X.Image recognition of tomato leaf diseases based on improved Multi-Scale AlexNet[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(13):162-169.
[13]XIAO Z Y,ZHAO X C.Recognition of typical pasture based on dual pooling and multi-scale kernel feature weighted CNN[J].Journal of Agricultural Machinery,2020,51(5):182-191.
[14]YU H J,SON C H.Apple Leaf Disease Identification throughRegion-of-Interest-Aware Deep Convolutional Neural Network[J].Journal of Imaging ence and Technology,2020,64(2):20507-1-20507-10.
[15]YANG W,BI X L,XIAO B.Agricultural pests detection method based on regional convolutional neural network[J].Computer Science,2018,45(S2):226-229,233.
[16]BRAHIMI M,MAHMOUDI S,BOUKHALFA K,et al.Deepinterpretable architecture for plant diseases classification[C]//Signal Processing:Algorithms,Architectures,Arrangements,and Applications (SPA).New Mexico,USA,2019:111-116.
[17]LONG J,SHELHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651.[18]RONNEBERGER O,FISCHER P,BROX T.U-net:convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241.
[19]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attentionu-net:Learning where to look for the pancreas[J].arXiv,2018.
[20]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Net++:A Nested U-Net Architecture for Medical Image Segmentation[J].Lecture Notes in Computer Science,2018,11045 LNCS:3-11.
[21]ZHAO B,FENG Q.Segmentation of grape diseases leaf basedon full convolution network[J].Journal of Nanjing Agricultural University,2018,41(4):752-759.
[22]WANG Z,ZHANG S W,WANG X F.Cucumber leaf lesion segmentation method based on improved fully convolutional neural network[J].Jiangsu Journal of Agriculture,2019,35(5):1054-1060.
[23]RUSSELL B C,TORRALBA A,MURPHY K P,et al.La-belMe:a database and web-based tool for image annotation[J].International Journal of Computer Vision,2008,77(1/2/3):157-173.
[24]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2016:770-778.
[25]HE K,ZHANG X,REN S,et al.Delving deep into rectifiers:Surpassing human-level performance on imagenet classification[C]//Proceedings of the IEEE International Conference on Computer Vision,2015,2015 International Conference on Computer Vision.2015:1026-1034.
[26]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv,2014.
[27]GAO S,CHENG M M,ZHAO K,et al.Res2net:A new multi-scale backbone architecture[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):652-662.
[28]HU J,LI S,GANG S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,42(8):2011-2023.
[1] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[2] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[3] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[4] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[5] 陈泳全, 姜瑛.
基于卷积神经网络的APP用户行为分析方法
Analysis Method of APP User Behavior Based on Convolutional Neural Network
计算机科学, 2022, 49(8): 78-85. https://doi.org/10.11896/jsjkx.210700121
[6] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[7] 魏恺轩, 付莹.
基于重参数化多尺度融合网络的高效极暗光原始图像降噪
Re-parameterized Multi-scale Fusion Network for Efficient Extreme Low-light Raw Denoising
计算机科学, 2022, 49(8): 120-126. https://doi.org/10.11896/jsjkx.220200179
[8] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[9] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[10] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[11] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[12] 刘月红, 牛少华, 神显豪.
基于卷积神经网络的虚拟现实视频帧内预测编码
Virtual Reality Video Intraframe Prediction Coding Based on Convolutional Neural Network
计算机科学, 2022, 49(7): 127-131. https://doi.org/10.11896/jsjkx.211100179
[13] 徐鸣珂, 张帆.
Head Fusion:一种提高语音情绪识别的准确性和鲁棒性的方法
Head Fusion:A Method to Improve Accuracy and Robustness of Speech Emotion Recognition
计算机科学, 2022, 49(7): 132-141. https://doi.org/10.11896/jsjkx.210100085
[14] 孙福权, 崔志清, 邹彭, 张琨.
基于多尺度特征的脑肿瘤分割算法
Brain Tumor Segmentation Algorithm Based on Multi-scale Features
计算机科学, 2022, 49(6A): 12-16. https://doi.org/10.11896/jsjkx.210700217
[15] 吴子斌, 闫巧.
基于动量的映射式梯度下降算法
Projected Gradient Descent Algorithm with Momentum
计算机科学, 2022, 49(6A): 178-183. https://doi.org/10.11896/jsjkx.210500039
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!