基于YOLO优化的轻量级目标检测网络

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 265-269.doi: 10.11896/jsjkx.201000152

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于YOLO优化的轻量级目标检测网络

许虞俊, 李晨   

  1. 东南大学电子科学与工程学院 南京210096
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 李晨(tolichen@seu.edu.cn)
  • 作者简介:220181304@seu.edu.cn

Light-weight Object Detection Network Optimized Based on YOLO Family

XU Yu-jun, LI Chen   

  1. School of Electronic Science and Engineering,Southeast University,Nanjing 210096,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:XU Yu-jun,born in 1996,postgraduate.His main research interests include deep learning and computer vision.
    LI Chen,born in 1982,Ph.D,associate professor.His main research interests include physical electronics and so on.

摘要: 目标检测是计算机视觉领域中一个相当活跃的研究领域,通过设计大型的深度卷积神经网络来提高目标检测的精度是一种十分有效的方法,然而目前在内存受限的应用场景中并不支持部署大型目标检测网。针对以上问题,文中提出了一种基于You Only Look Once(YOLO)系列单镜头目标检测网络设计原则的轻量级目标检测网,融合了GhostNet中的Ghost Module模块,并参考了MobileNet-v3中的通道注意力模块SE(Squeeze-and-Excitation),在卷积块中加入更优的ECA(Efficient Channel Attention)模块可以更好地利用可用的网络容量,使得网络在减少体系结构和计算的复杂度以及提升模型性能之间实现强的平衡;并且采用了Distance-IoU loss来解决检测框定位不准的问题,有效地提升了网络的收敛速度。最终模型的参数数量被压缩到了1.54 MB,小于YOLO Nano(即4.0MB),并且在VOC2007测试集上的mAP达到了72.1%,高于现有的YOLO Nano(即69.1%)。

关键词: Pascal VOC, YOLO深度卷积神经网络, 目标检测, 轻量级

Abstract: Object detection is an active research field in the computer vision field.It is a very effective method to improve object detection precision by designing a large-scale deep convolutional neural network.However,it is unfavorable to deploy a large-scale object detection network in memory-limited applications.To solve the above problems,this paper proposes a light-weight object detection network which is based on design principles from the YOLO family of single-shot object detection network architectures.This network integrates the Ghost Module in GhostNet,in addition,a better Efficient Channel Attention (ECA) module is added to the convolution block by referring to the Squeeze-and-Excitation (SE) module in MobileNet-v3.This module can make better use of the available network capacity,making the network achieve a strong balance between reducing the complexity of architecture and computation and improving the performance of the model.In addition,Distance-IoU loss is used to solve the problem of inaccurate regression position of bounding box and effectively speeds up network convergence.Finally,the number of parameters of the model was compressed to 1.54 MB less than YOLO Nano (4.0MB),and the mAP on the VOC2007 data set was 72.1% higher than the existing YOLO Nano (69.1%).

Key words: Light-weight, Object detection, Pascal VOC, YOLO deep convolutional neural network

中图分类号: 

  • TP391
[1]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//European Conference on Computer Vision.Springer,Cham,2016:21-37.
[2]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[3]HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969.
[4]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015:91-99.
[5]ZOPH B,CUBUK E D,GHIASI G,et al.Learning data augmentation strategies for object detection[J].arXiv:1906.11172,2019.
[6]LIU Z,LI J,SHEN Z,et al.Learning efficient convolutional networks through network slimming[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2736-2744.
[7]ZHANG D,YANG J,YE D,et al.Lq-nets:Learned quantization for highly accurate and compact deep neural networks[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:365-382.
[8]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7263-7271.
[9]REDMON J,FARHADI A.Yolov3:An incremental improvement[J].arXiv:1804.02767,2018.
[10]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017.
[11]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[12]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1314-1324.
[13]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[14]HAN K,WANG Y,TIAN Q,et al.GhostNet:More features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1580-1589.
[15]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856.
[16]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:116-131.
[17]IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Squeeze-Net:AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB model size[J].arXiv:1602.07360,2016.
[18]WONG A,FAMUORI M,SHAFIEE M J,et al.YOLO nano:A highly compact you only look once convolutional neural network for object detection[J].arXiv:1910.01271,2019.
[19]WANG Q,WU B,ZHU P,et al.ECA-net:Efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542.
[20]RADOSAVOVIC I,KOSARAJU R P,GIRSHICK R,et al.Designing network design spaces[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10428-10436.
[21]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[22]ORHAN A E,PITKOW X.Skip connections eliminate singularities[J].arXiv:1701.09175,2017.
[23]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision & Pattern Recognition.IEEE Computer Society,2016:770-778.
[24]ZHENG Z,WANG P,LIU W,et al.Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression[C]//AAAI.2020:12993-13000.
[25]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125.
[26]LI Y,HUANG H,XIE Q,et al.Research on a Surface Defect Detection Algorithm Based on MobileNet-SSD[J].Applied Sciences,2018,8(9):1678.
[1] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[2] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[3] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[4] 沈超, 何希平.
基于纹理特征增强和轻量级网络的人脸防伪算法
Face Anti-spoofing Algorithm Based on Texture Feature Enhancement and Light Neural Network
计算机科学, 2022, 49(6A): 390-396. https://doi.org/10.11896/jsjkx.210600217
[5] 马宾, 付永康, 王春鹏, 李健, 王玉立.
基于GDIoU损失函数的YOLOv4绝缘子高效定位算法
High Performance Insulators Location Scheme Based on YOLOv4 with GDIoU Loss Function
计算机科学, 2022, 49(6A): 412-417. https://doi.org/10.11896/jsjkx.210600089
[6] 陈永平, 朱建清, 谢懿, 吴含笑, 曾焕强.
基于外接圆半径差损失的实时安全帽检测算法
Real-time Helmet Detection Algorithm Based on Circumcircle Radius Difference Loss
计算机科学, 2022, 49(6A): 424-428. https://doi.org/10.11896/jsjkx.220100252
[7] 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳.
三维城市场景中的小物体检测
Small Object Detection in 3D Urban Scenes
计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174
[8] 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇.
深度卷积神经网络图像实例分割方法研究进展
Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network
计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038
[9] 徐涛, 陈奕仁, 吕宗磊.
基于改进YOLOv3的机坪工作人员反光背心检测研究
Study on Reflective Vest Detection for Apron Workers Based on Improved YOLOv3 Algorithm
计算机科学, 2022, 49(4): 239-246. https://doi.org/10.11896/jsjkx.210200119
[10] 张侣, 周博文, 吴亮红.
基于改进卷积注意力模块与残差结构的SSD网络
SSD Network Based on Improved Convolutional Attention Module and Residual Structure
计算机科学, 2022, 49(3): 211-217. https://doi.org/10.11896/jsjkx.201200019
[11] 赫晓慧, 邱芳冰, 程淅杰, 田智慧, 周广胜.
基于边缘特征融合的高分影像建筑物目标检测
High-resolution Image Building Target Detection Based on Edge Feature Fusion
计算机科学, 2021, 48(9): 140-145. https://doi.org/10.11896/jsjkx.200800002
[12] 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷.
融合改进密集连接和分布排序损失的遥感图像检测
Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss
计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001
[13] 龚浩田, 张萌.
基于关键点检测的无锚框轻量级目标检测算法
Lightweight Anchor-free Object Detection Algorithm Based on Keypoint Detection
计算机科学, 2021, 48(8): 106-110. https://doi.org/10.11896/jsjkx.200700161
[14] 李琳, 刘学亮, 赵烨, 纪平.
结合乐高滤波器和SSD的低光照图像融合检测方法
Low Light Image Fusion Detection Method Based on Lego Filter and SSD
计算机科学, 2021, 48(7): 213-218. https://doi.org/10.11896/jsjkx.200800127
[15] 辛元雪, 史朋飞, 薛瑞阳.
基于区域提取与改进 LBP 特征的运动目标检测
Moving Object Detection Based on Region Extraction and Improved LBP Features
计算机科学, 2021, 48(7): 233-237. https://doi.org/10.11896/jsjkx.200600131
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!