供需匹配中的非诚信行为预防

计算机科学 ›› 2021, Vol. 48 ›› Issue (4): 303-308.doi: 10.11896/jsjkx.200900090

• 信息安全 • 上一篇    下一篇

供需匹配中的非诚信行为预防

张少杰, 鹿旭东, 郭伟, 王世鹏, 何伟   

  1. 山东大学软件学院 济南250000
  • 收稿日期:2020-06-24 修回日期:2020-10-11 出版日期:2021-04-15 发布日期:2021-04-09
  • 通讯作者: 鹿旭东(dongxul@sdu.edu.cn)
  • 基金资助:
    国家重点研发计划(2019YFB1705904);山东省重大科技创新工程项目(2019JZZY020505,2019JZZY010109,2018YFJH0506)

Prevention of Dishonest Behavior in Supply-Demand Matching

ZHANG Shao-jie, LU Xu-dong, GUO Wei, WANG Shi-peng, HE Wei   

  1. School of Software,Shandong University,Jinan 250000,China
  • Received:2020-06-24 Revised:2020-10-11 Online:2021-04-15 Published:2021-04-09
  • About author:ZHANG Shao-jie,born in 1998,master,is a member of China Computer Federation.His main research interests include multiagent systems,machine learning,and reinforcement learning.(sagechang2020@outlook.com)
    LU Xu-dong,born in 1971,Ph.D,lectu-rer,is a member of China Computer Fe-deration.His main research interests include crowd science,big data technology and intelligent data analysis,medical treatment and health.
  • Supported by:
    National Key Research and Development Project of China(2019YFB1705904) and Science and Technology Deve-lopment Plan Project of Shandong Province(2019JZZY020505,2019JZZY010109,2018YFJH0506).

摘要: 供需匹配问题可以通过社交网络(Social Network,SN)下的众包模式得到解决。但由于实际应用中的非合作约束,以及社交网络的隐私保护机制,众包的参与者具有通过非诚信行为获利的动机与条件。这类行为会影响公平性原则,并将导致网络中信任链的崩塌,最终使得整个众包模式的供需匹配规则失效。为解决众包供需匹配方法中的非诚信问题,考虑通过分布式公开记账的方式来确保成员如实汇报个体的行为与状态,并通过核对公开的信息来寻找两类非诚信者。此外,设计基于信誉的惩罚机制来对抗非诚信行为,并最终通过理论分析证明了此机制的有效性与可行性。在此机制下,众包参与者的最优策略便是保证诚实。

关键词: 非诚信行为, 非合作, 供需匹配, 社交网络, 众包

Abstract: Supply-demand matching problem can be solved by crowdsourcing in social networks (SN).However,due to the non-cooperative constraints in practical applications and the privacy protection mechanism of social networks,participants of crowdsourcing have the motivation and conditions to profit from dishonest behaviors.This kind of behavior affects the fairness principle,and will lead to the collapse of the trust chain in the networ.In order to solve the problem of dishonest behavior in the crowdsourcing supply-demand matching method,this paper considers the distributed public accountingto ensure that members truthfully report individual behavior and status,and looks for two types of dishonest individuals by checking the public information.This paper also designs a punishment mechanism based on reputation to counter dishonest behavior.Finally,the validity and feasibility of our mechanism are proved by theoretical analysis.Under the mechanism,the best strategy for crowdsourcing participants is to be honest.

Key words: Crowdsourcing, Dishonest behavior, Non-cooperative, Social networks, Supply-demand matching

中图分类号: 

  • TP399
[1]YUEN M C,KING I,LEUNG K S.A Survey of Crowdsourcing Systems[C]//Proceedings of IEEE International Conference on Privacy,Security,Risk and Trust and IEEE International Conference on Social Computing.Los Alamitos:IEEE Computer Society,2011:766-773.
[2]BUCCAFURRI F,LAX G,NICOLAZZO S,et al.Driving Global Team Formation in Social Networks to Obtain Diversity[C]//Proceedings of International Conference of Web Engineering.Berlin:Springer,2014:410-419.
[3]CHAMBERLAIN J.Groupsourcing:Distributed Problem Sol-ving Using Social Networks[C]//Proceedings of AAAI Confe-rence on Human Computation and Crowdsourcing.Menlo Park:AAAI Press,2014:22-29.
[4]JIANG J,AN B,JIANG Y,et al.Group-Oriented Task Allocation for Crowdsourcing in Social Networks[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019(99):1-16.
[5]KARGAR M,AN A,ZIHAYAT M.Efficient bi-objective team formation in social networks[C]//Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases.Berlin Heidelberg:Springer-Verlag,2012:483-498.
[6]LYKOURENTZOU I,WANG S,KRAUT R E,et al.Team Da-ting:A Self-Organized Team Formation Strategy for Collaborative Crowdsourcing[C]//Proceedings of ACM CHI 2016:the top conference for Human-Computer Interaction.New York:ACM Press,2016:1243-1249.
[7]ROKICKI M,ZERR S,SIERSDORFER S.Groupsourcing:Team competition designs for crowdsourcing[C]//Proceedings of the 24th International Conference on World Wide Web.New York:ACM Press,2015:906-915.
[8]SUN Y,TAN W,HUANG L.A team discovery model forcrowdsourcing tasks to social networks[J].International Journal of Engineering and Technology,2017,12(1):21-44.
[9]HUANG J B,SUN X J,ZHOU Y,et al.Research Survey on Team Formation in Social Networks[J].Journal of Software,2017,28(4):993-1009.
[10]JIANG J,AN B,JIANG Y,et al.Understanding crowdsourcing systems from a multiagent perspective and approach[J].ACM Transactions on Autonomous and Adaptive Systems,2018,13(2):1-32.
[11]LIU W W,DENG Z H,CAO L B,et al.Mining Top K Spread Sources for a Specific Topic and a Given Node[J].IEEE Transactions on Cybernetics,2015,45(11):2472-2483.
[12]ZHANG S J,LU X D,WANG S P,et al.Supply-Demand Matching in Non-Cooperative Social Networks[J].IEEE Access,2020,8:162458-162466.
[13]LIU Q,LUO T,TANG R,et al.An Efficient and Truthful Pricing Mechanism for Team Formation in Crowdsourcing Markets[C]//Proceedings of IEEE International Conference on Communications.Piscataway:IEEE Press,2015:567-572.
[14]WANG W Y,HE Z P,SHI P,et al.Truthful team formation for crowdsourcing in social networks[C]//Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems.Berlin:Springer,2016:1327-1328.
[15]JIANG Y C,JIANG J C.Understanding Social Networks From a Multiagent Perspective[J].IEEE Transactions on Multimedia,2014,25(10):2743-2759.
[16]TRAN-THANH L,STEIN S,ROGERS A,et al.Efficientcrowdsourcing of unknown experts using multi-armed bandits[C]//Proceedings of European Conference on Artificial Intelligence.Netherlands:IOS Press,2012:768-773.
[17]TRAN-THANH L,HUYNH T D,ROSENFELD A,et al.BudgetFIx:Budget limited crowdsourcing for interdependent task allocation with quality guarantees[C]//Proceedings of International Conference on Autonomous Agents and Multiagent Systems.Berlin:Springer,2014:477-484.
[18]WANG W Y,HE Z P,SHI P,et al.Strategic Social TeamCrowdsourcing:Forming a Team of Truthful Workers for Crowdsourcing in Social Networks[J].IEEE Transactions on Mobile Computing,2019,18(6):1419-1432.
[1] 傅彦铭, 朱杰夫, 蒋侃, 黄保华, 孟庆文, 周兴.
移动众包中基于多约束工人择优的激励机制研究
Incentive Mechanism Based on Multi-constrained Worker Selection in Mobile Crowdsourcing
计算机科学, 2022, 49(9): 275-282. https://doi.org/10.11896/jsjkx.210700129
[2] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[3] 郝强, 李杰, 张曼, 王路.
基于改进YOLOv3的空间非合作目标部件识别算法
Spatial Non-cooperative Target Components Recognition Algorithm Based on Improved YOLOv3
计算机科学, 2022, 49(6A): 358-362. https://doi.org/10.11896/jsjkx.210700048
[4] 魏鹏, 马玉亮, 袁野, 吴安彪.
用户行为驱动的时序影响力最大化问题研究
Study on Temporal Influence Maximization Driven by User Behavior
计算机科学, 2022, 49(6): 119-126. https://doi.org/10.11896/jsjkx.210700145
[5] 阳真, 黄松, 郑长友.
基于区块链与改进CP-ABE的众测知识产权保护技术研究
Study on Crowdsourced Testing Intellectual Property Protection Technology Based on Blockchain and Improved CP-ABE
计算机科学, 2022, 49(5): 325-332. https://doi.org/10.11896/jsjkx.210900075
[6] 余皑欣, 冯秀芳, 孙静宇.
结合物品相似性的社交信任推荐算法
Social Trust Recommendation Algorithm Combining Item Similarity
计算机科学, 2022, 49(5): 144-151. https://doi.org/10.11896/jsjkx.210300217
[7] 严磊, 张功萱, 王添, 寇小勇, 王国洪.
混合云下具有交付期约束的众包任务调度算法
Scheduling Algorithm for Bag-of-Tasks with Due Date Constraints on Hybrid Clouds
计算机科学, 2022, 49(5): 244-249. https://doi.org/10.11896/jsjkx.210300120
[8] 陈丹红, 彭张林, 万德全, 杨善林.
众包平台用户价值识别与细分:基于改进的RFM模型
Identification and Segmentation of User Value in Crowdsourcing Platforms:An Improved RFMModel
计算机科学, 2022, 49(4): 37-42. https://doi.org/10.11896/jsjkx.210800255
[9] 畅雅雯, 杨波, 高玥琳, 黄靖云.
基于SEIR的微信公众号信息传播建模与分析
Modeling and Analysis of WeChat Official Account Information Dissemination Based on SEIR
计算机科学, 2022, 49(4): 56-66. https://doi.org/10.11896/jsjkx.210900169
[10] 左园林, 龚月姣, 陈伟能.
成本受限条件下的社交网络影响最大化方法
Budget-aware Influence Maximization in Social Networks
计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228
[11] 郭磊, 马廷淮.
基于好友亲密度的用户匹配
Friend Closeness Based User Matching
计算机科学, 2022, 49(3): 113-120. https://doi.org/10.11896/jsjkx.210200137
[12] 沈彪, 沈立炜, 李弋.
空间众包任务的路径动态调度方法
Dynamic Task Scheduling Method for Space Crowdsourcing
计算机科学, 2022, 49(2): 231-240. https://doi.org/10.11896/jsjkx.210400249
[13] 王剑, 王玉翠, 黄梦杰.
社交网络中的虚假信息:定义、检测及控制
False Information in Social Networks:Definition,Detection and Control
计算机科学, 2021, 48(8): 263-277. https://doi.org/10.11896/jsjkx.210300053
[14] 谭琪, 张凤荔, 王婷, 王瑞锦, 周世杰.
融入结构度中心性的社交网络用户影响力评估算法
Social Network User Influence Evaluation Algorithm Integrating Structure Centrality
计算机科学, 2021, 48(7): 124-129. https://doi.org/10.11896/jsjkx.200600096
[15] 韩丽霞, 张占营.
基于树增益朴素贝叶斯网络的服务定价策略
TAN-based Service Pricing Strategy
计算机科学, 2021, 48(6A): 203-. https://doi.org/10.11896/jsjkx.200900024
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!