计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 305-309.doi: 10.11896/j.issn.1002-137X.2016.09.061
张灵,田小路,罗源,常捷,吴勇
ZHANG Ling, TIAN Xiao-lu, LUO Yuan, CHANG Jie and WU Yong
摘要: 为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表情图像进行稀疏表示,再利用压缩感知理论寻求低分辨率测试样本的最稀疏解,采用求得的最稀疏解实现低分辨率人脸疲劳表情的分类。在低分辨率人脸视觉特征的疲劳表情图像库TIREDFACE的实验测试结果表明,将该方法用于低分辨人脸疲劳表情识别,性能优于线性法、最近邻法、支持向量机以及最近邻子空间法。可见,该方法用于低分辨率人脸疲劳表情识别时识别效果较好,精确度较高。
[1] China Transportation Yearbook, China Transportation Year-book[R].Beijing:China Transportation Yearbook,2014(in Chinese) 中国交通年鉴社.中国交通年鉴2014[R].北京:中国交通年鉴社,2014 [2] Zhao Chi-hang,Zhang Xiao-zheng,Zhang Bai-ling.Driver’s fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles[J].IET Intelligent Transport Systems,2013,7(1):36-45 [3] Song Feng-yi,Tan Xiao-yang,Liu Xue.Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients[J].Pattern Recognition,2014,47(9):2825-2838 [4] Yang Qiu-fen,Li Can-jun,Li Zhen-jun.Application of FTGSVM Algorithm in Expression Recognition of Fatigue Driving[J].Journal of Multimedia,2014,9(4):527-533 [5] Wang Xue-mei,Zhang Jia-jun.Recognition System for Fatigue Facial Expression of Driver[J].Applied Mechanics and Mate-rials,2014,644-650:4174-4177 [6] Guo Yu-hang, Liu Jie.A Novel Approach of Eye DetectionBased on Haar-Like Feature and SVM[J].Applied Mechanics and Materials,2011,121-126:863-1867 [7] Ahmed,Rafi,Emon K E K,et al.Robust driver fatigue recognition using image processing[C]∥2014 International Conference on Informatics,Electronics & Vision (ICIEV).2014:1-6 [8] Wei H,Wei Z.Driver Fatigue Recognition Based on Supervised LPP and MKSVM[C]∥3rd International Conference on Digital Image Processing (ICDIP 2011).2011:80091p-80091p-6 [9] Li Shi-wu,Wang Lin-hong,Yang Zhi-fa.An active driver fatigue identification technique using multiple physiological features[C]∥2011 International Conference on Mechatronic Science,Electric Engineering and Computer (MEC).2011:733-737 [10] Agrawal U,Giripunje S,Bajaj P.Emotion and Gesture Recognition with Soft Computing Tool for Drivers Assistance System in Human Centered Transportation[C]∥2013 IEEE International Conference on Systems,Man,and Cybernetics (SMC).2013:4612-4616 [11] Candes E J,Wakin M B.An introduction to compressive sam-pling.[J] IEEE Signal Processing Magazine,2008,25(2):21-30 [12] Fan Zi-zhu,Ni Ming,Zhu Qi,et al.Weighted sparse representation for face recognition[J].Neurocomputing,2015,151(Part 1):304-309 [13] Huang Sheng,Yang Yu,Yang Dan.Class specific sparse representation for classification[J].Signal Processing,2015,116:38-42 [14] Xu Bing-xin,Guo Ping,Chen C L.An adaptive regularizationmethod for sparse representation[J].Integrated Computer-Aided Engineering,2014,21(1):91-100 [15] Hui Kang-hua,Li Chun-li,Zhang Lei.Sparse neighbor representation for classification[J].Pattern Recognition Letters,2012,33(5):661-669 [16] Yang J,Wright J,Huang T S,et al.Image super-resolution viasparse representation[J].IEEE Trans.on Image Processing,2010,19(11):2861-2873 [17] Pan Dao-hua.Evaluation method based on the reliability of expert group for uncertainty reasoning[J].Scientific Chinese,2015(12):165(in Chinese) 潘道华.基于不确定性推理中专家群信度的评价方法[J].科学中国人,2015(12):165 |
No related articles found! |
|