基于稀疏表示的低分辨率人脸疲劳表情识别

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 305-309.doi: 10.11896/j.issn.1002-137X.2016.09.061

• 图形图像与模式识别 • 上一篇    下一篇

基于稀疏表示的低分辨率人脸疲劳表情识别

张灵,田小路,罗源,常捷,吴勇   

  1. 广东工业大学计算机学院 广州510006,广东工业大学计算机学院 广州510006,广东工业大学计算机学院 广州510006,广东工业大学计算机学院 广州510006,广东工业大学计算机学院 广州510006
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受广东省自然科学基金(2014A030310169),广州市科技计划(2014Y2-00211)资助

Method of Low Resolution Facial Fatigue Expression Recognition Based on Sparse Representation

ZHANG Ling, TIAN Xiao-lu, LUO Yuan, CHANG Jie and WU Yong   

  • Online:2018-12-01 Published:2018-12-01

摘要: 为了有效提高低分辨率图像的人脸疲劳表情识别性能,提出一种基于稀疏表示的低分辨率人脸疲劳表情的识别方法。首先,采用肯德尔和谐系数可信度分析法构建了低分辨率人脸疲劳表情图像库TIREDFACE。其次,通过图像库中的低分辨率样本疲劳表情图像进行稀疏表示,再利用压缩感知理论寻求低分辨率测试样本的最稀疏解,采用求得的最稀疏解实现低分辨率人脸疲劳表情的分类。在低分辨率人脸视觉特征的疲劳表情图像库TIREDFACE的实验测试结果表明,将该方法用于低分辨人脸疲劳表情识别,性能优于线性法、最近邻法、支持向量机以及最近邻子空间法。可见,该方法用于低分辨率人脸疲劳表情识别时识别效果较好,精确度较高。

关键词: 稀疏表示,压缩感知,疲劳表情,基于稀疏表示分类,肯德尔和谐系数

Abstract: In order to effectively improve the performance of facial fatigue expression recognition on the low resolution image,a method of fatigue facial expression recognition based on sparse representation was proposed.Firstly,the reliability analysis method of Kendall coefficient of concordance is used to construct the low-resolution facial fatigue expression database TIREDFACE.Secondly,the sparse representation of the low resolution facial fatigue expression images of the identified test samples in the database is sought,and then the compressed sensing theory is used to seek their sparsest solution.Finally,according to the sparsest solution,the low-resolution facial fatigue expression classification is performed.Experimental results on TIREDFACE database show that the low resolution facial fatigue expression perfor-mance obtained by this method is much better than the linear classifier,the nearest neighbor (NN),support vector machine (SVM) and the nearest subspace (NS).Therefore,the proposed method on the low resolution facial fatigue expression recognition tasks achieves better performance and high accuracy.

Key words: Sparse representation,Compressed sensing,Fatigue expression,Sparse representation-based classification(SRC),Kendall coefficient of concordance

[1] China Transportation Yearbook, China Transportation Year-book[R].Beijing:China Transportation Yearbook,2014(in Chinese) 中国交通年鉴社.中国交通年鉴2014[R].北京:中国交通年鉴社,2014
[2] Zhao Chi-hang,Zhang Xiao-zheng,Zhang Bai-ling.Driver’s fatigue expressions recognition by combined features from pyramid histogram of oriented gradient and contourlet transform with random subspace ensembles[J].IET Intelligent Transport Systems,2013,7(1):36-45
[3] Song Feng-yi,Tan Xiao-yang,Liu Xue.Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients[J].Pattern Recognition,2014,47(9):2825-2838
[4] Yang Qiu-fen,Li Can-jun,Li Zhen-jun.Application of FTGSVM Algorithm in Expression Recognition of Fatigue Driving[J].Journal of Multimedia,2014,9(4):527-533
[5] Wang Xue-mei,Zhang Jia-jun.Recognition System for Fatigue Facial Expression of Driver[J].Applied Mechanics and Mate-rials,2014,644-650:4174-4177
[6] Guo Yu-hang, Liu Jie.A Novel Approach of Eye DetectionBased on Haar-Like Feature and SVM[J].Applied Mechanics and Materials,2011,121-126:863-1867
[7] Ahmed,Rafi,Emon K E K,et al.Robust driver fatigue recognition using image processing[C]∥2014 International Conference on Informatics,Electronics & Vision (ICIEV).2014:1-6
[8] Wei H,Wei Z.Driver Fatigue Recognition Based on Supervised LPP and MKSVM[C]∥3rd International Conference on Digital Image Processing (ICDIP 2011).2011:80091p-80091p-6
[9] Li Shi-wu,Wang Lin-hong,Yang Zhi-fa.An active driver fatigue identification technique using multiple physiological features[C]∥2011 International Conference on Mechatronic Science,Electric Engineering and Computer (MEC).2011:733-737
[10] Agrawal U,Giripunje S,Bajaj P.Emotion and Gesture Recognition with Soft Computing Tool for Drivers Assistance System in Human Centered Transportation[C]∥2013 IEEE International Conference on Systems,Man,and Cybernetics (SMC).2013:4612-4616
[11] Candes E J,Wakin M B.An introduction to compressive sam-pling.[J] IEEE Signal Processing Magazine,2008,25(2):21-30
[12] Fan Zi-zhu,Ni Ming,Zhu Qi,et al.Weighted sparse representation for face recognition[J].Neurocomputing,2015,151(Part 1):304-309
[13] Huang Sheng,Yang Yu,Yang Dan.Class specific sparse representation for classification[J].Signal Processing,2015,116:38-42
[14] Xu Bing-xin,Guo Ping,Chen C L.An adaptive regularizationmethod for sparse representation[J].Integrated Computer-Aided Engineering,2014,21(1):91-100
[15] Hui Kang-hua,Li Chun-li,Zhang Lei.Sparse neighbor representation for classification[J].Pattern Recognition Letters,2012,33(5):661-669
[16] Yang J,Wright J,Huang T S,et al.Image super-resolution viasparse representation[J].IEEE Trans.on Image Processing,2010,19(11):2861-2873
[17] Pan Dao-hua.Evaluation method based on the reliability of expert group for uncertainty reasoning[J].Scientific Chinese,2015(12):165(in Chinese) 潘道华.基于不确定性推理中专家群信度的评价方法[J].科学中国人,2015(12):165

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!