基于低秩张量恢复的视频块效应处理

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 280-283.doi: 10.11896/j.issn.1002-137X.2016.09.056

• 图形图像与模式识别 • 上一篇    下一篇

基于低秩张量恢复的视频块效应处理

陈代斌,杨晓梅   

  1. 四川大学电气信息学院 成都610065,四川大学电气信息学院 成都610065
  • 出版日期:2018-12-01 发布日期:2018-12-01

Block-coded Video Deblocking Based on Low-rank Tensor Recovery

CHEN Dai-bin and YANG Xiao-mei   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对块编码的视频解码后存在块效应的问题,提出了一种基于块和低秩张量恢复的块效应处理方法。首先在视频序列里寻找相似块构造三阶张量,根据背景张量的低秩性和块效应的稀疏性,利用扩展于张量上的增广拉格朗日乘子法求解一个低秩张量恢复问题。从张量模型的角度来进行视频块效应处理,更好地保护了高维数据的结构特性。实验结果显示,相对于传统去块效应方法,通过该方法得到的视频图像有更高的峰值信噪比(PSNR)和更好的视觉效果。

关键词: 视频编解码,视频去块效应,张量恢复,增广拉格朗日乘子法

Abstract: Block-coded videos suffer from the blocking artifacts after being decoded.In order to solve this problem,a block-based deblocking method using low-rank tensor recovery was proposed.First,three order tensor is constructed through clustering similar blocks in video sequence.Then,according to low-rank property of background tensor and sparsity of blocking artifacts,the proposed approach utilizes the augmented Lagrange multiplier method which extends to tensor to solve the low-rank tensor recovery problem.The proposed approach utilizes tensor model to preserve the structural properties of high dimensional data.Experimental results show that it can obtain higher PSNR value and better visual effect comparing with traditional deblocking methods.

Key words: Video codec,Video deblocking,Tensor recovery,Augmented Lagrange multiplier

[1] List P,Joch A,Lainema J,et al.Adaptive deblocking filter [J].IEEE Transactions on Circuits & Systems for Video Technology,2003,13(7):614-619
[2] Yang Yong-yi,Galatsanos N P,Katsaggelos A K.Projection-based spatially adaptive reconstruction of block-transform compressed images [J].IEEE Trans.on Image Processing,1995,4(7):896-908
[3] Francois A,Sylvain D,Jacques F.Adapted total variation for artifact free decompression of jpeg images [J].Journal of Mathematical Imaging and Vision,2005,23(2):199-211
[4] Li Xin,Dong Wei-sheng,Shi Guang-ming.Nonlocal image restoration with bilateral variance estimation:a low-rank approach [J].IEEE Trans.on Image Processing,2012,22(2):700-711
[5] Ren Jie,Liu Jia-ying,Li Ma-ding,et al.Postprocessing of block-coded video for deflicker and deblocking [C]∥2013 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Vancouver,BC,2013:1631-1635
[6] Shi Jia-rong,Zheng Xiu-yun,Wei Zong-tian,et al.Survey on al-gorithms of low-rank matrix recovery [J].Application Research of Computers,2013,30(6):1601-1605(in Chinese) 史加荣,郑秀云,魏宗田,等.低秩矩阵恢复算法综述[J].计算机应用研究,2013,30(6):1601-1605
[7] Lin Zhou-chen,Ganesh A,Wright J,et al.Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix [EB/OL].http://yima.csl.illinois.edu/psfile/rpca_algori-thms.pdf
[8] Lin Zhou-chen,Chen Min-ming,Ma Yi,et al.The augmentedLagrange multiplier method for exact recovery of corrupted low-rank matrices [EB/OL].(2010-09-26).http://arxiv.org/pdf/1009.5055v3.pdf
[9] Liu Xin,Zhong Bi-neng,Zhang Mao-sheng,et al.Motion Sa-liency Extraction via Tensor Based Low-rank Recovery and Block Sparse Representation [J].Journal of Computer-Aided Design & Computer Graphics,2014,26(10):1753-1763(in Chinese) 柳欣,钟必能,张茂胜,等.基于张量低秩恢复和块稀疏表示的运动显著性目标提取[J].计算机辅助设计与图形学学报,2014,26(10):1753-1763
[10] Goldfarb D,Qin Z W.Robust low-rank tensor recovery:models and algorithms [J].SIAM Journal on Matrix Analysis and Aoo-lications,2014,35(1):225-253
[11] Ji Hui,Huang Si-bin,Shen Zuo-wei,et al.Robust video restoration by joint sparse and low rank matrix approximation [J].SIAM Journal on Imaging Sciences,2011,4(4):1122-1142
[12] Candes E J,Li X D,Ma Y,et al.Robust principal componentanalysis [J].Journal of the ACM,2011,58(3):1-73
[13] Li Y,Yan J C,Zhou Y,et al.Optimal subspace learning and error correction for tensor [M]∥Nacture Notes in Computer Scien-ce.Heidelberg Springer,2010,6313:790-803

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!