计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 269-273.doi: 10.11896/j.issn.1002-137X.2016.09.054
喻飞,赵志勇,魏波
YU Fei, ZHAO Zhi-yong and WEI Bo
摘要: 因子分解机(Factorization Machine,FM) 算法是一种基于矩阵分解的机器学习算法,可用于求解回归、分类和排序等问题。FM模型中的参数求解使用的是基于梯度的优化方法,然而在样本较少的情况下,该优化方法收敛速度慢,且易陷入局部最优。差分进化算法(Differential Evolution,DE)是一种启发式的全局优化算法,具有收敛速度快等特性。为提高FM模型的训练速度,利用DE计算FM模型参数,提出了DE-FM算法。在数据集Diabetes、HorseColic以及音乐分类数据集Music上的实验结果表明,改进后的基于差分进化的因子分解机算法DE-FM在训练速度和准确性上均有所提高。
[1] Chauvin Y,Rumelhart D E.Backpropagation:theory,architectures,and applications[M].Psychology Press,1995 [2] Deng W J.Chen W C,Pei W.Back-propagation neural network based importance-performance analysis for determing critical service attributes[J].Expert Systems with Applications,2008,4(2):1115-1125 [3] Sridevi K,Sivaraman E,Mullai P.Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor[J].Bioresource Technology,2014,165(8):233-240 [4] Hosmer D W,Lemeshow S.Introduction to the logistic regression model[M]∥ Applied Logistic Regression(Second Edition).John Wiely & Sons,Inc.2005:1-30 [5] Ng A Y,Jordan M I.On discriminative vs.generative classifiers:A comparison of logistic regression and naive bayes[J].Advances in Neural Information Processing Systems,2002,2(3): 169-187 [6] Lemeshow S,Hosmer D W.A review of goodness of fit statistics for use in the development of logistic regression models[J].American Journal of Epidemiology,1982,115(1):92-106 [7] Cortes C, Vapnik V.Support-vector networks [J].MachineLearning,1995,20(3):273-297 [8] Rendle S.Factorization machines[C]∥2010 IEEE 10th International Conference on Data Mining (ICDM).2010:995-1000 [9] Rendle S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology (TIST),2012,3(3):57 [10] Rendle S.Scaling factorization machines to relational data[C]∥Proceedings of the VLDB Endowment.2013:337-348 [11] Rendle S,Gantner Z,Freudenthaler C,et al.Fast context-aware recommendations with factorization machines[C]∥Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.2011:635-644 [12] Storn R,Price K.Differential evolution-a simple and efficientheuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359 [13] Ilonen J, Kamarainen J K, Lampinen J.Differential evolutiontraining algorithm for feed-forward neural networks[J].Neural Processing Letters,2003,17(1):93-105 [14] Kotha S R,Vij S,Sahoo S K.A study on strategies and Mutantfactor in differential evolution algorithm for FIR filter design[C]∥2014 International Conference on Signal Processing and Integrated Networks (SPIN).2014:50-55 [15] Wang G-G,Gandomi A H,Alavi A H,et al.Hybrid krill herd algorithm with differential evolution for global numerical optimization[J].Neural Computing and Applications,2014,25(2):297-308 [16] Zhou Y L,Zhu Y H,Zhang J.Discrete Differential Evolutionwith Learning Mechanism[J].Computer Science,2011,8(7):225-227(in Chinese) 周雅兰,朱耀辉,张军.具有学习机制的离散差分演化算法[J].计算机科学,2011,38(7):225-227 [17] Wang C J,Wang X H,Xiao J M.Discrete Differential Evolution with Parameter Adaptive Mechanism[J].Computer Science,2014,41(1):279-282(in Chinese) 王丛佼,王锡淮,肖建梅.具有参数自适应机制的改进离散差分进化算法[J].计算机科学,2014,41(1):279-282 [18] Chun L Y,Song H,Yang J.Research on Music Classification Based on MFCC and BP Neural Network[C]∥2nd Internatio-nal Conference on Information,Electronics and Computer.2014:57-68 |
No related articles found! |
|