基于差分进化的因子分解机算法

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 269-273.doi: 10.11896/j.issn.1002-137X.2016.09.054

• 人工智能 • 上一篇    下一篇

基于差分进化的因子分解机算法

喻飞,赵志勇,魏波   

  1. 闽南师范大学物理与信息工程学院 漳州363000,武汉大学计算机学院 武汉430072,华东交通大学软件学院 南昌330013
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受福建省自然科学基金(2015J01270),江西省青年科学基金(GJJ14396)资助

Factorization Machine Based on Differential Evolution

YU Fei, ZHAO Zhi-yong and WEI Bo   

  • Online:2018-12-01 Published:2018-12-01

摘要: 因子分解机(Factorization Machine,FM) 算法是一种基于矩阵分解的机器学习算法,可用于求解回归、分类和排序等问题。FM模型中的参数求解使用的是基于梯度的优化方法,然而在样本较少的情况下,该优化方法收敛速度慢,且易陷入局部最优。差分进化算法(Differential Evolution,DE)是一种启发式的全局优化算法,具有收敛速度快等特性。为提高FM模型的训练速度,利用DE计算FM模型参数,提出了DE-FM算法。在数据集Diabetes、HorseColic以及音乐分类数据集Music上的实验结果表明,改进后的基于差分进化的因子分解机算法DE-FM在训练速度和准确性上均有所提高。

关键词: 因子分解机,差分进化算法,机器学习

Abstract: Factorization machine(FM) is a new machine learning algorithm based on the matrix factorization.It can be used to deal with the regression problems,classification problems and ranking problems.The solution of parameters in this model is based on the optimization method of gradient.However,under the condition of small amount of samples,the optimization method based on gradient has a slow convergence rate and may stick into local optimum.Differential evolution(DE) is a heuristic global optimization algorithm.It has a fast convergence rate.In order to improve the accuracy of FM,we proposed the DE-FM algorithm,which searches the best parameters of FM model with DE algorithm.We compared DE-FM with FM on the Diabetes dataset,the Horse-Colic dataset and the Music dataset,and the result shows that DE-FM can improve the accuracy.

Key words: Factorization machine,Differential evolution,Machine learning

[1] Chauvin Y,Rumelhart D E.Backpropagation:theory,architectures,and applications[M].Psychology Press,1995
[2] Deng W J.Chen W C,Pei W.Back-propagation neural network based importance-performance analysis for determing critical service attributes[J].Expert Systems with Applications,2008,4(2):1115-1125
[3] Sridevi K,Sivaraman E,Mullai P.Back propagation neural network modelling of biodegradation and fermentative biohydrogen production using distillery wastewater in a hybrid upflow anaerobic sludge blanket reactor[J].Bioresource Technology,2014,165(8):233-240
[4] Hosmer D W,Lemeshow S.Introduction to the logistic regression model[M]∥ Applied Logistic Regression(Second Edition).John Wiely & Sons,Inc.2005:1-30
[5] Ng A Y,Jordan M I.On discriminative vs.generative classifiers:A comparison of logistic regression and naive bayes[J].Advances in Neural Information Processing Systems,2002,2(3): 169-187
[6] Lemeshow S,Hosmer D W.A review of goodness of fit statistics for use in the development of logistic regression models[J].American Journal of Epidemiology,1982,115(1):92-106
[7] Cortes C, Vapnik V.Support-vector networks [J].MachineLearning,1995,20(3):273-297
[8] Rendle S.Factorization machines[C]∥2010 IEEE 10th International Conference on Data Mining (ICDM).2010:995-1000
[9] Rendle S.Factorization machines with libfm[J].ACM Transactions on Intelligent Systems and Technology (TIST),2012,3(3):57
[10] Rendle S.Scaling factorization machines to relational data[C]∥Proceedings of the VLDB Endowment.2013:337-348
[11] Rendle S,Gantner Z,Freudenthaler C,et al.Fast context-aware recommendations with factorization machines[C]∥Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.2011:635-644
[12] Storn R,Price K.Differential evolution-a simple and efficientheuristic for global optimization over continuous spaces[J].Journal of Global Optimization,1997,11(4):341-359
[13] Ilonen J, Kamarainen J K, Lampinen J.Differential evolutiontraining algorithm for feed-forward neural networks[J].Neural Processing Letters,2003,17(1):93-105
[14] Kotha S R,Vij S,Sahoo S K.A study on strategies and Mutantfactor in differential evolution algorithm for FIR filter design[C]∥2014 International Conference on Signal Processing and Integrated Networks (SPIN).2014:50-55
[15] Wang G-G,Gandomi A H,Alavi A H,et al.Hybrid krill herd algorithm with differential evolution for global numerical optimization[J].Neural Computing and Applications,2014,25(2):297-308
[16] Zhou Y L,Zhu Y H,Zhang J.Discrete Differential Evolutionwith Learning Mechanism[J].Computer Science,2011,8(7):225-227(in Chinese) 周雅兰,朱耀辉,张军.具有学习机制的离散差分演化算法[J].计算机科学,2011,38(7):225-227
[17] Wang C J,Wang X H,Xiao J M.Discrete Differential Evolution with Parameter Adaptive Mechanism[J].Computer Science,2014,41(1):279-282(in Chinese) 王丛佼,王锡淮,肖建梅.具有参数自适应机制的改进离散差分进化算法[J].计算机科学,2014,41(1):279-282
[18] Chun L Y,Song H,Yang J.Research on Music Classification Based on MFCC and BP Neural Network[C]∥2nd Internatio-nal Conference on Information,Electronics and Computer.2014:57-68

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!