一种改进的粒子滤波算法及其在GPS/DR组合定位中的应用

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 218-222.doi: 10.11896/j.issn.1002-137X.2016.09.043

• 人工智能 • 上一篇    下一篇

一种改进的粒子滤波算法及其在GPS/DR组合定位中的应用

杜航原,王文剑,白亮   

  1. 山西大学计算机与信息技术学院 太原030006,山西大学计算机与信息技术学院 太原030006;计算智能与中文信息处理教育部重点实验室 太原030006,计算智能与中文信息处理教育部重点实验室 太原030006
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(61273291,3),山西省高校科技创新项目(2014104),山西省回国留学人员科研资助

Improved Particle Filter and its Application in GPS/DR Integrated Positioning System

DU Hang-yuan, WANG Wen-jian and BAI Liang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对粒子滤波的重要性密度函数选择问题,提出一种基于集合卡尔曼滤波(Ensemble Kalman Filter,EnKF)的改进粒子滤波算法。该方法利用集合卡尔曼滤波产生粒子滤波在每一时刻各粒子的重要性密度函数,在融合最新观测信息的同时,使重要性密度函数更加符合状态的真实后验概率分布。为消除样本枯竭现象,对重采样后的粒子进行马尔科夫链蒙特卡洛处理。在仿真实验中,将新算法用于GPS/DR组合定位系统,与粒子滤波、扩展卡尔曼粒子滤波以及无迹粒子滤波进行比较。仿真结果表明,该算法的估计精度高于传统粒子滤波算法,同时其能够有效控制计算量,并且在粒子数目较少时仍能保证较好的估计性能。

关键词: 粒子滤波,重要性密度函数,集合卡尔曼滤波,组合定位系统

Abstract: An improved particle filtering algorithm based on the ensemble Kalman filter (EnKF) was proposed in this paper starting with the selection of importance density function of the particle filter.At each time instant,the importance density function is generated by EnKF which fuses the latest observation information and propagates the system states by using a collection of sampled state vectors,called an ensemble.In this way,the importance density function can be very close to the true posterior probability.Furthermore,to avoid the particle impoverishment problem,the Markov Chain Monte Carlo method was introduced after resampling process.In the simulation,the developed filter was compared with standard particle filter,extended Kalman particle filter and unscented particle filter in GPS/DR integrated system.The simulation results demonstrate the validity of the developed algorithm.Under the same conditions,the new filter is superior to other particle filtering algorithms with the respect to estimation accuracy,as well as it controls the computational load effectively.It is also found that the new filter can obtain outstanding performance even with a small number of particles.

Key words: Particle filter,Importance density function,Ensemble kalman filter,Integrated localization system

[1] El-Rabbany A.Introduction to GPS:The Global PositioningSystem,Second Edition[M].Artech House Publishers,2006:1-20
[2] Quddus M,Washington S.Shortest path and vehicle trajectory aided map-matching for low frequency GPS data[J].Transportation Research Part C:Emerging Technologies,2015,55:328-339
[3] Bevly D M,Parkinson B.Cascaded Kalman Filters for Accurate Estimation of Multiple Biases,Dead-Reckoning Navigation,and Full State Feedback Control of Ground Vehicles[J].IEEE Transactions on Control Systems Technology,2007,15(2):199-208
[4] Bong-Geun C,Ja-Kyung K,Bok-Joong Y,et al.The research of dead reckoning stabilization algorithm using different kinds of sensors[C]∥2010 International Conference on Control Automation and Systems(ICCAS 2010).Kintex:IEEE Press,2010:1089-1092
[5] Zhang Hai-tao,Zhao Yu-jiao.The performancecomparison and analysis of extended Kalman filters for GPS/DR navigation [J].Optik-International Journal for Light and Electron Optics,2011,122(9):777-781
[6] Tanathong S,Lee I.Using GPS/INS data to enhance imagematching for real-time aerial triangulation[J].Computers & Geosciences,2014,72:244-254
[7] Gong Yi-song.Research on particle filter algorithm and its application in GPS/DR integrated navigation[D].Zhengzhou:The PLA Information Engineering University,2010(in Chinese) 宫轶松.粒子滤波算法研究及其在GPS/DR组合导航中的应用[D].郑州:解放军信息工程大学,2010
[8] Jwo D J,Chung F C,Yu K L.GPS/INS Integration AccuracyEnhancement Using the Interacting Multiple Model Nonlinear Filters[J].Journal of Applied Research and Technology,2013,11(4):496-509
[9] Li Zhi,Xie Qiang.Moving Target Tracking Based on Improved Particle Filter[J].Computer Science,2014,41(2):232-235(in Chinese) 李志,谢强.一种基于改进粒子滤波的运动目标跟踪[J].计算机科学,2014,41(2):232-235
[10] Doucet A,Godsill S,Andrieu C.On Sequential Monte CarloMethods for Bayesian Filtering[J].Statistics and Computing,2000,10(3):197-208
[11] Merwe R V,Doucet A.The Unscented Particle Filter[EB/OL].http://cslu.cse.ogi.edu/publications/ps/UPF_CSLU_talk.pdf
[12] Gyrgy K,Kelemen A,Dávid L.Unscented Kalman Filters and Particle Filter Methods for Nonlinear State Estimation[J].Procedia Technology,2014,12(1):65-74
[13] Bourdarie S,Lazaro D,Nieminen P,et al.In-depth Analysis of SREM Count Rate Measurements for Future Use in EnKF Salammb? Data Assimilation Tool[J].IEEE Transactions on Nuclear Science,2014,61(4):1679-1686
[14] Lakshmivarahan S,Stensrud D.Ensemble Kalman filter[J].IEEE Control Systems,2009,29(3):34-46
[15] Lorentzen R J,Naevdal G.An Iterative Ensemble Kalman Filter[J].IEEE Transactions on Automatic Control,2012,56(8):1990-1995
[16] Luo X,Moroz I M.Ensemble Kalman filter with the unscented transform[J].Physica D,2009,238(17):549-562
[17] Zhao Z,Kumar M.An MCMC-based particle filter for multiple target tracking[C]∥15th International Conference on Information Fusion(Fusion 2012).Singapore:IEEE Press,2012:1676-1682
[18] Arulampalam M S,Maskell S,Gordon N,et al.A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188
[19] Zuo Jun-yi,Zhang Yi-zhe,Liang Yan.Particle Filter Based on Adaptive Part Resampling[J].Acta Automatica Sinica,2012,38(4):647-652(in Chinese) 左军毅,张怡哲,梁彦.自适应不完全重采样粒子滤波器[J].自动化学报,2012,38(4):647-652

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!