3-Set Packing参数化计数问题的复杂性及近似算法

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 23-26.doi: 10.11896/j.issn.1002-137X.2016.09.004

• 目次 • 上一篇    下一篇

3-Set Packing参数化计数问题的复杂性及近似算法

刘运龙   

  1. 湖南师范大学数学与计算机科学学院高性能计算与随机信息处理省部共建教育部重点实验室 长沙410081
  • 出版日期:2018-12-01 发布日期:2018-12-01

Research on Complexity and Approximation Algorithm for Counting 3-Set Packings of Size k

LIU Yun-long   

  • Online:2018-12-01 Published:2018-12-01

摘要: Set Packing参数化计数问题即在一个3-Set Packing实例中统计所有大小为k的不同packing的个数。首先证明了该问题的计算复杂性是#W[1]-难的,表明该问题不大可能存在固定参数可解的精确算法(除非#W[1]=FPT)。然后,通过拓展3-D Matching参数化计数问题的算法对3-Set Packing参数化计数问题提出了一个基于Monte-Carlo自适应覆盖算法和着色技术的随机近似算法。

关键词: 3-Set Packing,计数,复杂性,近似算法

Abstract: Counting 3-Set Packings of size k is to count distinct packings of size k in a given instance of 3-Set Packing.We first showed that the complexity of this problem is #W[1]-hard,which indicates that there exists no efficient fixed-parameter tractable algorithm for it(unless #W[1]=FPT).Subsequently,by extending the algorithm for counting 3-D Matchings of size k,we obtained a generalized approximation algorithm for counting 3-Set Packings of size k.This algorithm is heavily based on the Monte-Carlo self-adjusting coverage algorithm and the recent improved color-coding techniques.

Key words: 3-Set Packing,Counting,Complexity,Approximation algorithm

[1] McCartin C.Parameterized counting problems[C]∥Proceedings of the 27th International Symposium on Mathematical Foundations of Computer Science(MFCS’02).2002:556-567
[2] Flum J,Grohe M.The parameterized complexity of countingproblems[J].SIAM Journal on Computing,2004,33(4):892-922
[3] Zhang Chi-hao,Chen Yi-jia.Counting problems in parameterized complexity[J].TsingHua Science and Technology,2014,19(4):410-420
[4] Flum J, Grohe M.Parameterized complexity theory[M].Springer-Verlag Berlin Heidelberg,2006
[5] Curticapean R.Counting matching of size k is #W[1]-hard[C]∥Proceedings of the 40th International Colloquium on Automata,Languages and Programming(ICALP’13).2013:352-363
[6] Arvind V,Raman V.Approximation algorithms for some para-meterized counting problems[C]∥Proceedings of the 13th International Symposium on Algorithms and Computation (ISAAC’02).2002:453-464
[7] Garey M R,Johnson D S.Computers and Intractability:A Guide to the Theory of NP-Completeness[M].W.H.Freeman,New York,1979
[8] Wang Jian-xin,Feng Qi-long.An O*(3.523k) parameterized algorithm for 3-Set Packing[C]∥Proceedings of the 5th International Conference on Theory and Applications of Models of Computation (TAMC’08).2008:82-93
[9] Abu-Khzam F N.A quadratic kernel for 3-Set Packing [C]∥Proceedings of the 6th Annual Conference on Theory and Applications of Models of Computation (TAMC’09).2009:81-87
[10] Feng Qi-long,Wang Jian-xin,Chen Jian-er.Improved algorithms for weighted 3-Set Packing[J].Journal of Software,2010,21(5):886-898(in Chinese) 冯启龙,王建新,陈建二.加权3-Set Packing 的改进算法[J].软件学报,2010,21(5):886-898
[11] Li Shao-hua,Feng Qi-long,Wang Jian-xin,et al.Kernelizaitonfor weighted 3-Set Packing problem[J].Journal of Computer Research and Development,2012,49(8):1781-1786(in Chinese) 李绍华,冯启龙,王建新,等.加权3-Set Packing 问题的核心化[J].计算机研究与发展,2012,49(8):1781-1786
[12] Dahllof V,Jonsson P.An algorithm for counting maximumweighted independent sets and its application [C]∥Proceedings of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA’02).2002:292-298
[13] Liu Yun-long, Chen Jian-er, Wang Jian-xin.On counting 3-DMatchings of size k [J].Algorithmica,2009,54:530-543
[14] Chen Jian-er,Lu Song-jian,Sze S H,et al.Improved algorithms for path,matching,and packing problems[C]∥Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’07).2007:298-307
[15] Karp R M,Luby M,Madras N.Monte-Carlo approximation algorithms for enumeration problems [J].Journal of Algorithms,1989,10:429-448
[16] Liu Yun-long,Wang Jian-xin.On counting parameterized matching and packing [C]∥Proceedings of the 10th International Frontiers of Algorithmics Workshop (FAW’16).2016:125-134

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!