大数据下基于信息流的快速种子用户识别

计算机科学 ›› 2016, Vol. 43 ›› Issue (7): 281-284.doi: 10.11896/j.issn.1002-137X.2016.07.051

• 人工智能 • 上一篇    下一篇

大数据下基于信息流的快速种子用户识别

谢杨晓洁,赵凌   

  1. 四川师范大学数学与软件科学学院 成都610066,四川师范大学数学与软件科学学院 成都610066
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金重大研究计划:可信网络交易软件系统试验环境与示范应用(91218301),四川省教育厅重点项目:基于三阶段DEA方法对我国地区R&D投入绩效的评估及四川省R&D投入绩效分析(13sa0137)资助

Precise Identification of Seed Users Based on Information Flow in Big Data

XIE Yang-xiao-jie and ZHAO Ling   

  • Online:2018-12-01 Published:2018-12-01

摘要: 针对大数据下的种子用户的精准识别,分析了影响用户成为种子用户的两大因素:时间优先和属性特征,以及种子信息传播的两大特征:传播时差和方向性。据此,提出了一种快速寻找种子用户的方法,即先将用户按属性特征分到不同的组中,通过分析所有组之间短信流通关系和传播时差找到信息流,即方向性,从而逐步缩小了搜索范围,再通过阈值筛选备选种子。最后验证备选种子,建立树状评价模型,设计种子用户的评价体系,由评价体系的最后得分寻找出种子用户。

关键词: 大数据,种子用户,信息流,信息流浓度,树状评价模型

Abstract: Aiming at the precise identification of data seeds under big data,we analyzed two major factors which impact users to become seeds users:time priority and attribute characteristics,and two characteristics of the dissemination of seed information:propagation time difference and directionality.Accordingly,we proposed a method to quickly find the seed users.First,users are put into different groups by the property features.Through analyzing the time difference and SMS circulation among all groups,we can find out the dissemination of information flow,that is to say,direction.Thus the search range is gradually narrowed,and alternative seed is filtered through threshold.We established evaluation model tree,designed seed users evaluation system,and used this evaluation system to calculate the final score to find out the seed users.

Key words: Big data,Seed user,Information flow,Information flow density,Tree network evaluation model

[1] Wang Yuan-zuo,Jin Xiao-long,Cheng xue-qi.Network big data:present and future[J].Chinese Journal of Computers,2013,36(6):1125-1138(in Chinese) 王元卓,靳小龙,程学旗.网络大数据:现状与展望[J].计算机学报,2013,36(6):1125-1138
[2] Li Guo-jie,Cheng Xue-qi.Research Status and Scientific Thin-king of Big Data[J].Bulletin of Chinese Academy of Sciences,2012,7(6):647-657
[3] Chen J,Subramanian,Brewer E.SMS-based Web search for lo-wend mobile devices[C]∥Proceedings of the 16th Annual International Conference on Mobile Computing and Networking.New York,2010:125-136
[4] Ye Shao-zhi,Wu S F.Measuring message propagation and social influence on Twilter.com [J].Lecture Notes in Computing Science,2010,6430:216-231
[5] Tomar V,Asnani H,Karandikar A,et al.Social network analysis of the Short Message Service[C]∥2010 Natinal Conference on Communications.2010:1-5
[6] Ma Nan,Guan Jian-cheng,Zhao Yi.Bringing pagerank to the citation analysis[J].Information Processing & Management,2008,44(2):800-810
[7] Ding Ying,Yan E,Frazho A,et al.Pagerank for ranking authors in co-citation networks [J].Journal of the American Society for Information Science and Technology,2009,60(11):2229-2243
[8] Franceschet M.Pagerank:standing on the shoulders of giants[J].Communications of the ACM,2011,4(6):92-101
[9] Li Yong-li,Wu Chong,et al.A Tree-network Model for Mining Short Message Services Seed Users and Its Empirical Analysis[J].Chinese Journal of Management Science,2012(20):49-54(in Chinese) 李永立,吴冲,等.基于树形网络分析的短信种子用户挖掘模型及其实证分析[J].中国管理科学,2012(20):49-54

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!