基于GMDH因果关系的软件缺陷预测模型

计算机科学 ›› 2016, Vol. 43 ›› Issue (7): 171-176.doi: 10.11896/j.issn.1002-137X.2016.07.031

• 软件与数据库技术 • 上一篇    下一篇

基于GMDH因果关系的软件缺陷预测模型

张德平,刘国强,张柯   

  1. 南京航空航天大学计算机科学与技术学院 南京210016,南京航空航天大学计算机科学与技术学院 南京210016,南京航空航天大学计算机科学与技术学院 南京210016
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受中央高校基本科研业务费专项资金(NS2014072)资助

Software Defect Prediction Model Based on GMDH Causal Relationship

ZHANG De-ping, LIU Guo-qiang and ZHANG Ke   

  • Online:2018-12-01 Published:2018-12-01

摘要: 软件缺陷预测是软件可靠性研究的一个重要方向。基于自组织数据挖掘(GMDH)网络与因果关系检验理论提出了一种软件缺陷预测模型,借鉴Granger检验思想,利用GMDH网络选择与软件失效具有因果关系的度量指标,建立软件缺陷预测模型。该方法从复杂系统建模角度研究软件度量指标与软件缺陷之间的因果关系,可以检验多变量之间在非线性意义上的因果关系。最后基于两组真实软件失效数据集,将所提出的方法与基于Granger因果检验的软件缺陷预测模型进行比较分析。结果表明,基于GMDH因果关系的软件缺陷预测模型比Granger因果检验方法具有更为显著的预测效果。

关键词: 软件缺陷,因果关系,软件度量,GMDH网络,Granger检验

Abstract: Software defect prediction is an important aspect in the field of software reliability research.In this paper,we presented a software defect prediction model based on GMDH networks and causal test theory.The model selects the software metrics with the defect causal relationship by learning Granger test ideas and uses the GMDH network which can check the non-linear causality between multiple factors of software defect.Finally,based on two real software failure data sets,we designed an experiment to compare the proposed method with the Granger test software defect prediction model.The experiment results show that the proposed model is more effective and efficient than Granger test software defect prediction model.

Key words: Software defect,Causal relationship,Software metrics,GMDH network,Granger test

[1] Wang Qing,Wu Shu-jian,Li Ming-shu.Software defect predic-tion technology [J].Journal of Software,2008,19(7):1565-1580(in Chinese) 王青,伍书剑,李明树.软件缺陷预测技术[J].软件学报,2008,19(7):1565-1580
[2] Nagappan N,Ball T,Zeller A.Mining metrics to predict component failures[C]∥28th International Conference on Software Engineering (ICSE).2006:452-461
[3] Couto C,Araujo J E,Silva C,et al.Static correspondence and cor-relation between field defects and warnings reported by a bug finding tool[J].Software Quality Journal,2013,21(2):241-257
[4] Catal C.Software fault prediction:A literature review and current trends[J].Expert Systems with Applications,2011,38(4):4626-4636
[5] Singh Y,Kaur A,Malhotra R.Empirical validation of object-oriented metrics for predicting fault proneness models[J].Software Quality Journal,2010,18(1):3-35
[6] Couto C,Montandon J E,Silva C,et al.Static correspondenceand correlation between field defects and warnings reported by a bug finding tool[J].Software Quality Journal,2013,21(2):241-257
[7] Zimmermann T,Nagappan N.Predicting defects using networkanalysis on dependency graphs[C]∥Proceedings of the 30th International Conference on Software Engineering.ACM,2008:531-540
[8] Nagappn N,Ball T.Using software dependencies and churn me-trics to predict field failures:an empirical case study[C]∥First International Symposisum on Empirical Software Engineering and Measurement.2007:364-373
[9] Lee H J,Naish L,Ramamohanarao K.Study of the relationship of bug consistency with respect to performance of spectra me-trics[C]∥2nd IEEE International Conference on Computer Science and Information Technology,2009(ICCSIT 2009).2009:501-508
[10] Okutan A,Yildiz O T.Software defect prediction using Bayesian networks[J].Empir Software Eng.,2014,19(3):154-181
[11] Lehtinen T O A,Mntyl M V,Vanhanen J,et al.Perceivedcauses of software project failures-An analysis of their relationships[J].Information and Software Technology,2014,56(6):623-643
[12] Couto C,Silva C,Valente M T,et al.Uncovering causal relation-ships between software metrics and bugs[C]∥17th European Conference on Software Maintenance and Reengineering (CSMR).2012:223-232
[13] Couto C,Pires P,Valente M T,et al.Predicting software defects with causality tests[J].Journal of Systems and Software,2014,93(6):24-41
[14] D’Ambros M,Lanza M,Robbes R.An extensive comparison of bug prediction approaches[C]∥7th IEEE Working Conference on Mining Software Repositories (MSR),2010.2010:31-41
[15] Granger C.Investigating causal relations by econometric models and cross-spectral methods[J].Econometrica,1969,37(3):424-438
[16] Chow G C.Econometrics[M].New York:McGraw Hill,1983
[17] Zhang M Z,He C Z,Gu X,et al.D-GMDH:A novel inductive modelling approach in the forecasting of the industrial economy[J].Economic Modelling,2013,30(2):514-520
[18] Tamura H,Kondo T.Heuristics Free Group Method of DataHandling Algorithm of Generating Optimal Partial Polynomials with Application to Air Pollution Prediction[J].International Journal of Systems Science,1980,11(9):1095-1011
[19] Liu W,Tian S B.An Improved GMSM Method and its Application[J].ACTA Automatic Sinica,1993,19(4):468-471
[20] Ramakanta M,Ravi V.Software Reliability Prediction UsingGroup Method of Data Handling[C]∥12th International Conference of Rough Sets,Fuzzy Sets,Data Mining and Granular Computing.2009:13-19
[21] Couto C,Piresa P.Predicting software defects with causalitytests[J].Empirical Software Engineering,2014,19:154-181

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!