基于改进差别矩阵的属性约简增量式更新算法

计算机科学 ›› 2015, Vol. 42 ›› Issue (6): 251-255.doi: 10.11896/j.issn.1002-137X.2015.06.053

• 人工智能 • 上一篇    下一篇

基于改进差别矩阵的属性约简增量式更新算法

龙浩,徐 超   

  1. 中国矿业大学计算机科学与技术学院 徐州221008;徐州工业职业技术学院信息管理技术学院 徐州221000,武汉大学计算机学院 武汉430072
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家自然科学基金重点项目(91118003),国家自然科学基金面上项目(61170022),江苏省高校“青蓝工程”优秀青年骨干教师培养对象资助

Incremental Updating Algorithm for Attribute Reduction Based on Improved Discernibility Matrix

LONG Hao and XU Chao   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对目前基于差别矩阵的属性约简算法需要耗费大量的时间和空间,粗糙集中求属性核和属性约简更新效率低以及有关属性约简的增量式更新算法目前还比较少等问题,提出了一种基于改进差别矩阵的属性约简增量式更新算法。该算法在更新差别矩阵时,仅须插入某一行及某一列,或删除某一行并修改相应的列,因而可有效地提高核和属性约简的更新效率。然后在分析新增对象x与原决策系统对象的关系的基础上,给出了属性约简增量更新算法。理论与实验分析表明,提出的算法提高了属性约简的更新效率,明显降低了时间和空间复杂度。

关键词: 差别矩阵,属性约简,粗糙集,决策系统

Abstract: In order to solve the problem that the attribute reduction algorithm based on discernibility matrix spends a lot of time and space and the efficiency of the attribute core and the attribute reduction update of the rough set are slow,what is more,it lacks the incremental updating algorithm for attribute reduction,this paper proposed an incremental updating algorithm for attribute reduction based on the discernibility matrix.When the algorithm updates the discernibility matrix,it only needs to insert a row and a column,or delete a row and modify the corresponding column,which can effectively improve the updating efficiency of core and attribute reduction.We analyzed the relationship of the new object x with the original decision system object,giving out the updating algorithm of the attribute reduction increment.Theoretical and experimental analysis shows that the proposed algorithm can improve the updating efficiency of attribute reduction,reducing the time and space complexity significantly.

Key words: Discernibility matrix,Attribute reduction,Rough set,Original decision system

[1] Pawlak Z.Rough sets[J].International Journal of Information and Computer Science,1982,11(5):341-356
[2] Pawlak Z.Rough set approach to multi-attribute decision analysis[J].European Journal of Operational Research,1994,2(3):443-459
[3] Liu Qing.Rough Sets and Rough Reasoning[M].Beijing:Science Press,2001
[4] Hu X H,Cercone N.Learning in relational databases:Aroughset approach[J].Computational Intelligence,1995,11(2):323-338
[5] 徐章艳,杨炳儒,宋威.基于简化的二进制差别矩阵的快速属性约简算法[J].计算机科学,2006,33(4):65-68 Xu Zhang-yan,Yang Bing-ru,Song Wei.Fast attribute reduction algorithm based on simple binary discernibility matrix[J].Computer science,2006,33(4):65-68
[6] 葛浩,李龙澍,杨传健.改进的快速属性约简算法[J].小型微型计算机系统,2009,30(2):308-312 Ge Hao,Li Long-shu,Yang Chuan-jian.Advanced Fast attribute reduction algorithm[J].Micro computer system,2009,30(2):308-312
[7] 刘宗田.属性最小约简的增量式算法[J].电子学报,1999,27(11):96-98 Liu Zong-tian.An incremental algorithm for minimum attribute reduction[J].Chinese Journal of Electronics,1999,27(11):96-98
[8] Jelonek J,Krawiec K,Slowinski R.Rough set reduction of attributes and their domains for neural networks[J].Computational Intelligence,1995,11(2):339-347
[9] 杨明.一种基于改进的差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822 Yang Ming.An incremental updating algorithm for attribute reduction based on improved discernibility matrix[J].Chinese Journal of computers,2007,30(5):815-822

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!