- Research Article
- Open access
- Published:
Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise
EURASIP Journal on Advances in Signal Processing volume 2006, Article number: 098738 (2006)
Abstract
We consider the design of near-capacity-achieving error-correcting codes for a discrete multitone (DMT) system in the presence of both additive white Gaussian noise and impulse noise. Impulse noise is one of the main channel impairments for digital subscriber lines (DSL). One way to combat impulse noise is to detect the presence of the impulses and to declare an erasure when an impulse occurs. In this paper, we propose a coding system based on low-density parity-check (LDPC) codes and bit-interleaved coded modulation that is capable of taking advantage of the knowledge of erasures. We show that by carefully choosing the degree distribution of an irregular LDPC code, both the additive noise and the erasures can be handled by a single code, thus eliminating the need for an outer code. Such a system can perform close to the capacity of the channel and for the same redundancy is significantly more immune to the impulse noise than existing methods based on an outer Reed-Solomon (RS) code. The proposed method has a lower implementation complexity than the concatenated coding approach.
References
Zogakis TN, Aslanis JT Jr., Cioffi JM: Analysis of a concatenated coding scheme for a discrete multitone modulation system. Proceedings of IEEE Military Communications Conference (MILCOM '94), October 1994, Fort Monmouth, NJ, USA 2: 433–437.
Zhang L, Yongacoglu A: Turbo coding in ADSL DMT systems. Proceedings of IEEE International Conference on Communications (ICC '01), June 2001, Helsinki, Finland 1: 151–155.
Cai Z, Subramanian KR, Zhang L: DMT scheme with multidimensional turbo trellis code. Electronics Letters 2000, 36(4):334–335. 10.1049/el:20000259
Ardakani M, Esmailian T, Kschischang FR: Near-capacity coding in multicarrier modulation systems. IEEE Transactions on Communications 2004, 52(11):1880–1889. 10.1109/TCOMM.2004.836560
Eleftheriou E, Ölçer S: Low-density parity-check codes for digital subscriber lines. Proceedings of IEEE International Conference on Communications (ICC '02), April—May 2002, New York, NY, USA 3: 1752–1757.
Cooklev T, Tzannes M, Friedman A: Low-density parity-check coded modulation for ADSL. In Temporary Document BI-081. ITU-Telecommunication Standardization Sector, Geneva, Switzerland; October 2000.
Berrou C, Glavieux A, Thitimajshima P: Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 2: 1064–1070.
Divsalar D, Pollara F: On the design of turbo codes. In TDA Progr. Rep. 42–123. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif, USA; 1995.
Richardson TJ, Urbanke RL: The capacity of low-density parity-check codes under message-passing decoding. IEEE Transactions on Information Theory 2001, 47(2):599–618. 10.1109/18.910577
Richardson TJ, Shokrollahi MA, Urbanke RL: Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory 2001, 47(2):619–637. 10.1109/18.910578
Shokrollahi A: Capacity-achieving sequences. In Codes, Systems, and Graphical Models, IMA Volumes in Mathematics and Its Applications. Edited by: Marcus B, Rosenthal J. Springer, New York, NY, USA; 2000:153–166.
Imai H, Hirakawa S: A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory 1977, 23(3):371–377. 10.1109/TIT.1977.1055718
Caire G, Taricco G, Biglieri E: Bit-interleaved coded modulation. IEEE Transactions on Information Theory 1998, 44(3):927–946. 10.1109/18.669123
Forney GD Jr., Ungerboeck G: Modulation and coding for linear Gaussian channels. IEEE Transactions on Information Theory 1998, 44(6):2384–2415. 10.1109/18.720542
Yu W, Toumpakaris D, Cioffi JM, Gardan D, Gauthier F: Performance of asymmetric digital subscriber lines in an impulse noise environment. IEEE Transactions on Communications 2003, 51(10):1653–1657. 10.1109/TCOMM.2003.818107
Barton M: Impulse noise performance of an asymmetric digital subscriber lines passband transmission system. IEEE Transactions on Communications 1995, 43(234):1337–1340.
Kerpez KJ, Gottlieb AM: The error performance of digital subscriber lines in the presence of impulse noise. IEEE Transactions on Communications 1995, 43(5):1902–1905. 10.1109/26.387412
Toumpakaris D, Yu W, Cioffi JM, Gardan D, Ouzzif M: A byte-erasure method for improved impulse immunity in DSL systems using soft information from an inner code. Proceedings of IEEE International Conference on Communications (ICC '03), May 2003, Anchorage, Alaska, USA 4: 2431–2435.
Toumpakaris D, Cioffi JM, Gardan D, Ouzzif M: A square distance-based byte-erasure method for reduced-delay protection of DSL systems from non-stationary interference. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '03), December 2003, San Francisco, Calif, USA 4: 2114–2119.
Chow PS: Bandwidth optimized digital transmission techniques for spectrally shaped channels with impulse noise, M.S. thesis. Department of Electrical Engineering, Stanford University, Stanford, Calif, USA; May 1993.
Wachsmann U, Fischer RFH, Huber JB: Multilevel codes: theoretical concepts and practical design rules. IEEE Transactions on Information Theory 1999, 45(5):1361–1391. 10.1109/18.771140
Pottie GJ, Taylor DP: Multilevel codes based on partitioning. IEEE Transactions on Information Theory 1989, 35(1):87–98. 10.1109/18.42180
Calderbank AR: Multilevel codes and multistage decoding. IEEE Transactions on Communications 1989, 37(3):222–229. 10.1109/26.20095
Tanner RM: A recursive approach to low complexity codes. IEEE Transactions on Information Theory 1981, 27(5):533–547. 10.1109/TIT.1981.1056404
Kschischang FR, Frey BJ, Loeliger H-A: Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory 2001, 47(2):498–519. 10.1109/18.910572
Luby MG, Mitzenmacher M, Shokrollahi MA, Spielman DA: Efficient erasure correcting codes. IEEE Transactions on Information Theory 2001, 47(2):569–584. 10.1109/18.910575
Chung S-Y, Forney GD Jr., Richardson TJ, Urbanke R: On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters 2001, 5(2):58–60. 10.1109/4234.905935
Hou J, Siegel PH, Milstein LB, Pfister D: Multilevel coding with low-density parity-check component codes. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '01), November 2001, San Antonio, Tex, USA 2: 1016–1020.
Ungerboeck G: Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory 1982, 28(1):55–67. 10.1109/TIT.1982.1056454
Ardakani M, Chan TH, Kschischang FR: EXIT-chart properties of the highest-rate LDPC code with desired convergence behavior. IEEE Communications Letters 2005, 9(1):52–54. 10.1109/LCOMM.2005.1375239
ten Brink S: Convergence behavior of iteratively decoded parallel concatenated codes. IEEE Transactions on Communications 2001, 49(10):1727–1737. 10.1109/26.957394
Hou J, Siegel PH, Milstein LB: Performance analysis and code optimization of low density parity-check codes on Rayleigh fading channels. IEEE Journal on Selected areas in Communications 2001, 19(5):924–934. 10.1109/49.924876
Flarion Inc., "Vector-LDPC Coding Solution Data Sheet", https://doi.org/www.flarion.com/products/overviews/Vector-LDPC_Product_Overview.pdf
Tian T, Jones C, Villasenor JD, Wesel RD: Construction of irregular LDPC codes with low error floors. Proceedings of IEEE International Conference on Communications (ICC '03), May 2003, Anchorage, Alaska, USA 5: 3125–3129.
Author information
Authors and Affiliations
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Ardakani, M., Kschischang, F.R. & Yu, W. Near-Capacity Coding for Discrete Multitone Systems with Impulse Noise. EURASIP J. Adv. Signal Process. 2006, 098738 (2006). https://doi.org/10.1155/ASP/2006/98738
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/ASP/2006/98738