- Research Article
- Open access
- Published:
gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization
EURASIP Journal on Advances in Signal Processing volume 2007, Article number: 031951 (2006)
Abstract
A new geometric approach for nonlinear independent component analysis (ICA) is presented in this paper. Nonlinear environment is modeled by the popular post nonlinear (PNL) scheme. To eliminate the nonlinearity in the observed signals, a novel linearizing method named as geometric post nonlinear ICA (gpICA) is introduced. Thereafter, a basic linear ICA is applied on these linearized signals to estimate the unknown sources. The proposed method is motivated by the fact that in a multidimensional space, a nonlinear mixture is represented by a nonlinear surface while a linear mixture is represented by a plane, a special form of the surface. Therefore, by geometrically transforming the surface representing a nonlinear mixture into a plane, the mixture can be linearized. Through simulations on different data sets, superior performance of gpICA algorithm has been shown with respect to other algorithms.
References
Hyvärinen A, Karhunen J, Oja E: Independent Component Analysis. John Wiley & Sons, New York, NY, USA; 2001.
Cichocki A, Amari S-I: Adaptive Blind Signal and Image Processing. John Wiley & Sons, New York, NY, USA; 2002.
Comon P: Independent component analysis, a new concept? Signal Processing 1994,36(3):287-314. 10.1016/0165-1684(94)90029-9
Bell AJ, Sejnowski TJ: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995,7(6):1129-1159. 10.1162/neco.1995.7.6.1129
Belouchrani A, Abed-Meraim K, Cardoso J-F, Moulines E: A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing 1997,45(2):434-444. 10.1109/78.554307
Hyvärinen A: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 1999,10(3):626-634. 10.1109/72.761722
Pham D-T, Cardoso J-F: Blind separation of instantaneous mixtures of non stationary sources. IEEE Transactions on Signal Processing 2001,49(9):1837-1848. 10.1109/78.942614
Pajunen P, Hyvärinen A, Karhunen J: Nonlinear blind source separation by self-organizing maps. Proceedings of the International Conference on Neural Information Processing (ICONIP '96), September 1996, Hong Kong 2: 1207–1210.
Pajunen P, Karhunen J: A maximum likelihood approach to nonlinear blind source separation. Proceedings of 7th International Conference on Artificial Neural Networks (ICANN '97), October 1997, Lausanne, Switzerland 541–546.
Hochreiter S, Schmidhuber J: Feature extraction through LOCOCODE. Neural Computation 1999,11(3):679-714. 10.1162/089976699300016629
Hochreiter S, Schmidhuber J: LOCOCODE performs nonlinear ica without knowing the number of sources. Proceedings of the 1st International Workshop on Independent Component Analysis and Signal Separation (ICA '99), January 1999, Aussois, France 149–154.
Jutten C, Karhunen J: Advances in nonlinear blind source separation. Proceedings of the 4th International Workshop on Independent Component Analysis and Signal Separation (ICA '03), April 2003, Nara, Japan 245–256.
Hyvärinen A, Pajunen P: Nonlinear independent component analysis: existence and uniqueness results. Neural Networks 1999,12(3):429-439. 10.1016/S0893-6080(98)00140-3
Taleb A, Jutten C: Source separation in post-nonlinear mixtures. IEEE Transactions on Signal Processing 1999,47(10):2807-2820. 10.1109/78.790661
Ziehe A, Kawanabe M, Harmeling S, Müller K-R: Blind separation of post-nonlinear mixtures using linearizing transformations and temporal decorrelation. Journal of Machine Learning Research 2003,4(7-8):1319-1338.
Howard HY, Amari S-I, Cichocki A: Information-theoretic approach to blind separation of sources in non-linear mixture. Signal Processing 1998,64(3):291-300. 10.1016/S0165-1684(97)00196-5
Parashiv-Ionescu A, Jutten C, Ionescu A, Chovet A, Rusu A: High performance magnetic field smart sensor arrays with source separation. Proceedings of the 1st International Conference on Modeling and Simulation of Microsystems (MSM '98), April 1998, Santa Clara, Calif, USA 666–671.
Prakriya S, Hatzinakos D: Blind identification of LTI-ZMNLLTI nonlinear channel models. IEEE Transactions on Signal Processing 1995,43(12):3007-3013. 10.1109/78.476444
Korenberg MJ, Hunter IW: The identification of nonlinear biological systems: LNL cascade models. Biological Cybernetics 1996,55(2-3):125-134.
Nguyen TV, Patra JC, Das A: A post nonlinear geometric algorithm for independent component analysis. Digital Signal Processing 2005,15(3):276-294. 10.1016/j.dsp.2004.12.006
Nguyen TV, Patra JC, Das A, Ng GS: Post nonlinear blind source separation by geometric linearization. Proceedings of the International Joint Conference on Neural Networks (IJCNN '05), July-August 2005, Montreal, Canada 1: 244–249.
Eriksson J, Koivunen V: Blind identifiability of class of nonlinear instantaneous ica models. Proceedings of the 11th European Signal Processing Conference (EUSIPCO '02), September 2002, Toulouse, France 2: 7–10.
Georgiev P, Chichocki A: Robust independent component analysis via time-delayed cumulant functions. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2003,E86-A(3):573-579.
Cichocki A, Amari S-I, Siwek K, et al.Icalab toolboxes, 2003, https://doi.org/www.bsp.brain.riken.jp/ICALAB
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Nguyen, T.V., Patra, J.C. & Emmanuel, S. gpICA: A Novel Nonlinear ICA Algorithm Using Geometric Linearization. EURASIP J. Adv. Signal Process. 2007, 031951 (2006). https://doi.org/10.1155/2007/31951
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2007/31951