Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy | The European Physical Journal Plus Skip to main content
Log in

Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Non-local and non-convex energies represent fundamental interacting effects regulating the complex behavior of many systems in biophysics and materials science. We study one-dimensional, prototypical schemes able to represent the behavior of several biomacromolecules and the phase transformation phenomena in solid mechanics. To elucidate the effects of thermal fluctuations on the non-convex non-local behavior of such systems, we consider three models of different complexity relying on thermodynamics and statistical mechanics: (i) an Ising-type scheme with an arbitrary temperature-dependent number of interfaces between different domains, (ii) a zipper model with a single interface between two evolving domains, and (iii) an approximation based on the stationary phase method. In all three cases, we study the system under both isometric condition (prescribed extension, matching with the Helmholtz ensemble of the statistical mechanics) and isotensional condition (applied force, matching with the Gibbs ensemble). Interestingly, in the Helmholtz ensemble the analysis shows the possibility of interpreting the experimentally observed thermal effects with the theoretical force–extension relation characterized by a temperature-dependent force plateau (Maxwell stress) and a force peak (nucleation stress). We obtain explicit relations for the configurational properties of the system as well (expected values of the phase fractions and number of interfaces). Moreover, we are able to prove the equivalence of the two thermodynamic ensembles in the thermodynamic limit. We finally discuss the comparison with data from the literature showing the efficiency of the proposed model in describing known experimental effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E.A. Shank, C. Cecconi, J.W. Dill, S. Marqusee, C. Bustamante, The folding cooperativity of a protein is controlled by its chain topology. Nature 465, 637–640 (2010)

    Article  ADS  Google Scholar 

  2. R.M. Bhaskara, N. Srinivasan, Stability of domain structures in multi-domain proteins. Sci. Rep. 1, 40 (2011)

    Article  ADS  Google Scholar 

  3. M. Caruel, L. Truskinovsky, Bi-stability resistant to fluctuations. J. Mech. Phys. Sol. 109, 117 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  4. P. Kim, M.S. Nguyen, O. Kwon, Y.-J. Kim, Y.-J. Yoon, Phase-dependent dynamic potential of magnetically coupled two-degree-of-freedom bistable energy harvester. Sci. Rep. 6, 34411 (2016)

    Article  ADS  Google Scholar 

  5. C.A. Hunter, H.L. Anderson, What is cooperativity? Angew. Chem. Intl. Ed. 48, 7488 (2009)

    Article  Google Scholar 

  6. G. Florio, N.M. Pugno, M.J. Buehler, G. Puglisi, A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations. Acta Biomater. 134, 477–489 (2021)

    Article  Google Scholar 

  7. G. Perret, T. Lacornerie, F. Manca, S. Giordano, M. Kumemura, N. Lafitte, L. Jalabert, M.C. Tarhan, E.F. Lartigau, F. Cleri, H. Fujita, D. Collard, Real-time mechanical characterization of DNA degradation under therapeutic X-rays and its theoretical modeling. Nat. Microsyst. Nanoeng. 2, 16062 (2016)

    Article  Google Scholar 

  8. S.M. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795 (1996)

    Article  ADS  Google Scholar 

  9. M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub, Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295 (1997)

    Article  Google Scholar 

  10. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109 (1997)

    Article  Google Scholar 

  11. M. Rief, J.M. Fernandez, H.E. Gaub, Elastically coupled two-level systems as a model for biopolymer extensibility. Phys. Rev. Lett. 81, 4764 (1998)

    Article  ADS  Google Scholar 

  12. C. Storm, P.C. Nelson, Theory of high-force DNA stretching and overstretching. Phys. Rev. E 67, 051906 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. F. Ritort, Single-molecule experiments in biological physics: methods and applications. J. Phys. Condens. Matter 18, R531 (2006)

    Article  ADS  Google Scholar 

  14. K.C. Neuman, A. Nagy, Single-molecule experiments in biological physics: methods and applications. Nat. Meth. 5, 491 (2008)

    Article  Google Scholar 

  15. S. Kumar, M.S. Li, Biomolecules under mechanical force. Phys. Rep. 486, 1 (2010)

    Article  ADS  Google Scholar 

  16. T. Hoffmann, L. Dougan, Single molecule force spectroscopy using polyproteins. Chem. Soc. Rev. 41, 4781 (2012)

    Article  Google Scholar 

  17. O.K. Dudko, Decoding the mechanical fingerprints of biomolecules. Q. Rev. Biophys. 49, e3 (2016)

    Article  Google Scholar 

  18. M.L. Hughes, L. Dougan, The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep. Prog. Phys. 79, 076601 (2016)

    Article  ADS  Google Scholar 

  19. A.F. Huxley, R.M. Simmons, Proposed mechanism of force generation in striated muscle. Nature 233, 533 (1971)

    Article  ADS  Google Scholar 

  20. T.L. Hill, Theory of muscular contraction extended to groups of actin sites. Proc. Nat. Acad. Sci. 70, 2732 (1973)

    Article  ADS  Google Scholar 

  21. M. Epstein, W. Herzog, Theoretical models of skeletal muscle: biological and mathematical considerations (Wiley, New York, 1998)

    Google Scholar 

  22. M. Caruel, J.-M. Allain, L. Truskinovsky, Muscle as a metamaterial operating near a critical point. Phys. Rev. Lett. 110, 248103 (2013)

    Article  ADS  Google Scholar 

  23. M. Caruel, L. Truskinovsky, Statistical mechanics of the Huxley–Simmons model. Phys. Rev. E 93, 062407 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Caruel, L. Truskinovsky, Physics of muscle contraction. Rep. Prog. Phys. 81, 036602 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  25. M. Caruel, P. Moireau, D. Chapelle, Stochastic modeling of chemical-mechanical coupling in striated muscles. Biomech. Model. Mechanobiol. 18, 563 (2019)

    Article  Google Scholar 

  26. F. Kimmig, M. Caruel, Hierarchical modeling of force generation in cardiac muscle. Biomech. Model. Mechanobiol. 19, 2567–2601 (2020)

    Article  Google Scholar 

  27. A. Rafsanjani, A. Akbarzadeh, D. Pasini, Snapping mechanical metamaterials under tension. Adv. Mater. 27, 5931 (2015)

    Article  Google Scholar 

  28. N. Nadkarni, A.F. Arrieta, C. Chong, D.M. Kochmann, C. Daraio, Unidirectional transition waves in bistable lattices. Phys. Rev. Lett. 116, 244501 (2016)

    Article  ADS  Google Scholar 

  29. M.J. Frazier, D.M. Kochmann, Band gap transmission in periodic bistable mechanical systems. J. Sound. Vib. 388, 315 (2017)

    Article  ADS  Google Scholar 

  30. S. Katz, S. Givli, Solitary waves in a bistable lattice. Extr. Mech. Lett. 22, 106 (2018)

    Article  Google Scholar 

  31. S. Katz, S. Givli, Solitary waves in a nonintegrable chain with double-well potentials. Phys. Rev. E 100, 032209 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  32. B. Deng, P. Wang, V. Tournat, K. Bertoldi, Nonlinear transition waves in free-standing bistable chains. J. Mech. Phys. Sol. 136, 103661 (2020)

    Article  MathSciNet  Google Scholar 

  33. M. Hwang, A.F. Arrieta, Input-independent energy harvesting in bistable lattices from transition waves. Sci. Rep. 8, 3630 (2018)

    Article  ADS  Google Scholar 

  34. R.L. Harne, M.E. Schoemaker, K.W. Wang, Multistable chain for ocean wave vibration energy harvesting. Proc. SPIE 9057, 90570B (2014)

    ADS  Google Scholar 

  35. R.L. Harne, M.E. Schoemaker, B.E. Dussault, K.W. Wang, Wave heave energy conversion using modular multistability. Appl. Energy 130, 148 (2014)

    Article  Google Scholar 

  36. J.L. Ericksen, Equilibrium of bars. J. Elast. 5(3–4), 191–201 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. J.M. Ball, R.D. James, Fine phase mixtures as minimizers of energy, in Analysis and Continuum Mechanics. (Springer, New York, 1989), pp. 647–686

    Chapter  Google Scholar 

  38. L. Truskinovsky, G. Zanzotto, Ericksens bar revisited: energy wiggles. J. Mech. Phys. Solids 44, 1371–1408 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Müller, Variational models for microstructure and phase transitions, in Calculus of variations and geometric evolution 465 problems. (Springer, New York, 1999), pp. 85–210

    Chapter  Google Scholar 

  40. J.A. Shaw, S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta Mater. 45(2), 683–700 (1997)

    Article  ADS  Google Scholar 

  41. R. Abeyaratne, C. Chu, R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu–Al–Ni shape memory alloy. Philos. Mag. A 73(2), 457–497 (1996)

    Article  ADS  Google Scholar 

  42. I. Benichou, S. Givli, Structures undergoing discrete phase transformation. J. Mech. Phys. Solids 61, 94–113 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  43. N. Triantafyllidis, S. Bardenhagen, On higher order gradient continuum theories in 1-d nonlinear elasticity. Derivation from and comparison to the corresponding discrete models. J. Elast. 33(3), 259–293 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. B.D. Coleman, Necking and drawing in polymeric fibers under tension. Arch. Ration. Mech. Anal. 83(2), 115–137 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  45. X. Ren, L. Truskinovsky, Finite scale microstructures in nonlocal elasticity. J. Elast. Phys. Sci. Solids 59(1–3), 319–355 (2000)

    MathSciNet  MATH  Google Scholar 

  46. I. Müller, P. Villaggio, A model for an elastic-plastic body. Arch. Ration. Mech. Anal. 65(1), 25–46 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Fedelich, G. Zanzotto, Hysteresis in discrete systems of possibly interacting elements with a double-well energy. J. Nonlinear Sci. 2, 319–342 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  48. G. Puglisi, L. Truskinovsky, Mechanics of a discrete chain with bi-stable elements. J. Mech. Phys. Solids 48(1), 1–27 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. G. Puglisi, L. Truskinovsky, Thermodynamics of rate-independent plasticity. J. Mech. Phys. Solids 53(3), 655–679 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. L. Truskinovsky, A. Vainchtein, The origin of nucleation peak in transformation plasticity. J. Mech. Phys. Solids 52(6), 1421–1446 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. G. Puglisi, Hysteresis in multi-stable lattices with non-local interactions. J. Mech. Phys. Solids 54(10), 2060–2088 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. G. Puglisi, Nucleation and phase propagation in a multistable lattice with weak nonlocal interactions. Contin. Mech. Thermodyn. 19, 299–319 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  53. W. Liang, D.J. Srolovitz, M. Zhou, A micromechanical continuum model for the tensile behavior of shape memory metal nanowires. J. Mech. Phys. Solids 55, 1729–1761 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  54. L. Bellino, G. Florio, S. Giordano, G. Puglisi, On the competition between interface energy and temperature in phase transition phenomena. Appl. Eng. Sci. 2, 100009 (2020)

    Google Scholar 

  55. A. Duval, M. Haboussi, T.B. Zineb, Modelling of localization and propagation of phase transformation in superelastic SMA by a gradient nonlocal approach. Int. J. Solids Struct. 48, 1879–1893 (2011)

    Article  Google Scholar 

  56. R. Alessi, D. Bernardini, Analysis of localization phenomena in shape memory alloys bars by a variational approach. Int. J. Solids Struct. Volumes 73–74, 113–133 (2015)

    Article  Google Scholar 

  57. Z. Song, Analytical study on phase transition of shape memory alloy wire under uniaxial tension. Int. J. Eng. Sci. 152, 103295 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  58. D.B. Staple, S.H. Payne, A.L.C. Reddin, H.J. Kreuzer, Stretching and unfolding of multidomain biopolymers: a statistical mechanics theory of titin. Phys. Biol. 6, 025005 (2009)

    Article  ADS  Google Scholar 

  59. A. Prados, A. Carpio, L.L. Bonilla, Sawtooth patterns in force-extension curves of biomolecules: an equilibrium-statistical-mechanics theory. Phys. Rev. E 88, 012704 (2013)

    Article  ADS  Google Scholar 

  60. L.L. Bonilla, A. Carpio, A. Prados, Theory of force-extension curves for modular proteins and DNA hairpins. Phys. Rev. E 91, 052712 (2015)

    Article  ADS  Google Scholar 

  61. D. De Tommasi, N. Millardi, G. Puglisi, G. Saccomandi, An energetic model for macromolecules unfolding in stretching experiments. J. R. Soc. Interface 10, 20130651 (2013)

    Article  Google Scholar 

  62. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Two-state theory of single-molecule stretching experiments. Phys. Rev. E 87, 032705 (2013)

    Article  ADS  Google Scholar 

  63. D.E. Makarov, A theoretical model for the mechanical unfolding of repeat proteins. Biophys. J . 96, 2160 (2009)

    Article  Google Scholar 

  64. M. Benedito, S. Giordano, Isotensional and isometric force-extension response of chains with bistable units and Ising interactions. Phys. Rev. E 98, 052146 (2018)

    Article  ADS  Google Scholar 

  65. G. Florio, G. Puglisi, S. Giordano, Role of temperature in the decohesion of an elastic chain tethered to a substrate by onsite breakable links. Phys. Rev. Res. 2, 033227 (2020)

    Article  Google Scholar 

  66. A. Cannizzo, G. Florio, G. Puglisi, S. Giordano, Temperature controlled decohesion regimes of an elastic chain adhering to a fixed substrate by softening and breakable bonds. J. Phys. A Math. Theor. 54, 445001 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  67. G. Florio, G. Puglisi, Unveiling the influence of device stiffness in single macromolecule unfolding. Sci. Rep. 9, 4997 (2019)

    Article  ADS  Google Scholar 

  68. S. Giordano, Spin variable approach for the statistical mechanics of folding and unfolding chains. Soft Matter 13, 6877 (2017)

    Article  ADS  Google Scholar 

  69. M. Benedito, S. Giordano, Thermodynamics of small systems with conformational transitions: the case of two-state freely jointed chains with extensible units. J. Chem. Phys. 149, 054901 (2018)

    Article  ADS  Google Scholar 

  70. M. Benedito, S. Giordano, Unfolding pathway and its identifiability in heterogeneous chains of bistable units. Phys. Lett. A 384, 126124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Benedito, F. Manca, P.L. Palla, S. Giordano, Rate-dependent force-extension models for single-molecule force spectroscopy experiments. Phys. Biol. 17, 056002 (2020)

    Article  Google Scholar 

  72. L. Bellino, G. Florio, G. Puglisi, The influence of device handles in single-molecule experiments. Soft Matter 15, 8680 (2019)

    Article  ADS  Google Scholar 

  73. S. Cocco, J. Yan, J.-F. Léger, D. Chatenay, J.F. Marko, Overstretching and force-driven strand separation of double-helix DNA. Phys. Rev. E 70, 011910 (2004)

    Article  ADS  Google Scholar 

  74. J. Palmeri, M. Manghi, N. Destainville, Thermal denaturation of fluctuating finite DNA chains: the role of bending rigidity in bubble nucleation. Phys. Rev. E 77, 011913 (2008)

    Article  ADS  Google Scholar 

  75. R.L.B. Selinger, Z.-G. Wang, W.M. Gelbart, A. Ben-Shaul, Statistical-thermodynamic approach to fracture. Phys. Rev. A 43, 4396 (1991)

    Article  ADS  Google Scholar 

  76. H. Borja da Rocha, L. Truskinovsky, Equilibrium unzipping at finite temperature. Arch. Appl. Mech. 89, 535–544 (2019)

    Article  Google Scholar 

  77. H. Borja da Rocha, L. Truskinovsky, Rigidity-Controlled Crossover: From Spinodal to Critical Failure. Phys. Rev. Lett. 124, 015501 (2020)

    Article  ADS  Google Scholar 

  78. M. Ruiz-Garcıa, L.L. Bonilla, A. Prados, STM-driven transition from rippled to buckled graphene in a spin-membrane model. Phys. Rev. B 94, 205404 (2016)

    Article  ADS  Google Scholar 

  79. M. Ruiz-Garcia, L.L. Bonilla, A. Prados, Bifurcation analysis and phase diagram of a spin-string model with buckled states. Phys. Rev. E 96, 062147 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  80. J.K. Schoelz, P. Xu, V. Meunier, P. Kumar, M. Neek-Amal, P.M. Thibado, F.M. Peeters, Graphene ripples as a realization of a two-dimensional Ising model: a scanning tunneling microscope study. Phys. Rev. B 91, 045413 (2015)

    Article  ADS  Google Scholar 

  81. S. Shankar, D.R. Nelson, Thermalized buckling of isotropically compressed thin sheets. Phys. Rev. E 104, 054141 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  82. P.Z. Hanakata, A. Plummer, D.R. Nelson, Anomalous thermal expansion in ising-like puckered sheets. Phys. Rev. Lett. 128, 075902 (2022)

    Article  ADS  Google Scholar 

  83. G.I. Bell, Models for the specific adhesion of cells to cells. Science 200, 618 (1978)

    Article  ADS  Google Scholar 

  84. G.I. Bell, M. Dembo, P. Bongrand, Cell adhesion: competition between nonspecific repulsion and specific bonding. Biophys. J . 45, 1051 (1984)

    Article  Google Scholar 

  85. D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, Chichester, 2015)

    MATH  Google Scholar 

  86. R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982)

    MATH  Google Scholar 

  87. J.H. Weiner, Statistical Mechanics of Elasticity (Dover Publication Inc., New York, 2002)

    MATH  Google Scholar 

  88. J.A. Shaw, S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension. Int. J. Plast 13, 837–871 (1997)

    Article  Google Scholar 

  89. R. Nogueira de Codes, O.S. Hopperstad, O. Engler, O.-G. Lademo, J.D. Embury, A. Benallal, Spatial and temporal characteristics of propagating deformation bands in AA5182 alloy at room temperature. Metall. Mater. Trans. A. 42, 3358–3369 (2011)

    Article  Google Scholar 

  90. R. Schwab, V. Ruff, On the nature of the yield point phenomenon. Acta Mater. 61, 1798–1808 (2013)

    Article  ADS  Google Scholar 

  91. J.F. Hallai, S. Kyriakides, Underlying material response for Lüders-like instabilities. Int. J. Plast. 47, 1–12 (2013)

    Article  Google Scholar 

  92. H. Gu, L. Bumke, C. Chluba, E. Quandt, R.D. James, Phase engineering and supercompatibility of shape memory alloys. Mater. Today 21, 265 (2018)

    Article  Google Scholar 

  93. S. Pourbabak, A. Orekhov, V. Samaee, B. Verlinden, J.V. Humbeeck, D. Schryvers, In-situ TEM stress induced martensitic transformation in Ni\(_{50.8}\)Ti\(_{49.2}\) microwires. Shap. Mem. Superelast. 5, 154–162 (2019)

    Article  ADS  Google Scholar 

  94. H.S. Park, Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires. Nano Lett. 6, 958–962 (2006)

    Article  ADS  Google Scholar 

  95. W. Liang, M. Zhou, Atomistic simulations reveal shape memory of fcc metal nanowires. Phys. Rev. B 73, 115409 (2006)

    Article  ADS  Google Scholar 

  96. X. Guo, W. Liang, M. Zhou, Mechanism for the pseudoelastic behavior of FCC shape memory nanowires. Exp. Mech. 49, 183–190 (2009)

    Article  Google Scholar 

  97. F. Ma, K.-W. Xu, P.K. Chu, Surface-induced structural transformation in nanowires. Mater. Sci. Eng. R 74, 173–209 (2013)

    Article  Google Scholar 

  98. J. Yu, Q. Zhang, Z. Yue, Tensile mechanical properties of Ni\(_3\)Al nanowires at intermediate temperature. RSC Adv. 4, 20789 (2014)

    Article  ADS  Google Scholar 

  99. R. Mirzaeifar, K. Gall, T. Zhu, A. Yavari, R. DesRoches, Structural transformations in NiTi shape memory alloy nanowires. J. Appl. Phys. 115, 194307 (2014)

    Article  ADS  Google Scholar 

  100. N.-Y. Park, H.-S. Nam, P.-R. Cha, S.-C. Lee, Size-dependent transition of the deformation behavior of Au nanowires. Nano Res. 8, 941–947 (2015)

    Article  Google Scholar 

  101. P.-Y. Yang, S.-P. Ju, Z.-M. Lai, J.-Y. Hsieh, J.-S. Lin, The mechanical properties and thermal stability of ultrathin germanium nanowires. RSC Adv. 6, 105713 (2016)

    Article  ADS  Google Scholar 

  102. L. Li, M. Han, Molecular dynamics simulations on tensile behaviors of single-crystal BCC Fe nanowire: effects of strain rates and thermal environment. Appl. Phys. A 123, 450 (2017)

    Article  ADS  Google Scholar 

  103. R. Rezaei, C. Deng, Pseudoelasticity and shape memory effects in cylindrical FCC metal nanowires. Acta Mater. 132, 49–56 (2017)

    Article  ADS  Google Scholar 

  104. S.M.T. Mousavi, H. Zhou, G. Zou, H. Gao, Transition from source- to stress-controlled plasticity in nanotwinned materials below a softening temperature. NPJ Comput. Mater. 5, 2 (2019)

    Article  ADS  Google Scholar 

  105. H. Cao, Z. Rui, F. Yang, Mechanical properties of Cu nanowires: effects of cross-sectional area and temperature. Mater. Sci. Eng. A 791, 139644 (2020)

    Article  Google Scholar 

  106. J. Zhang, M. Zhang, L. Deng, J. Jin, P. Gong, X. Wang, Mechanical behavior of tetragonal zirconia nanopillars subjected to uniaxial loading: a molecular dynamics study. Mech. Mater. 151, 103666 (2020)

    Article  Google Scholar 

  107. R.G. Winkler, Equivalence of statistical ensembles in stretching single flexible polymers. Soft Matter 6, 6183 (2010)

    Article  ADS  Google Scholar 

  108. F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. J. Chem. Phys. 136, 154906 (2012)

    Article  ADS  Google Scholar 

  109. F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Response to “Comment on ‘Elasticity of flexible and semiflexible polymerswith extensible bonds in the Gibbs and Helmholtz ensembles”’. J. Chem. Phys. 138, 157102 (2013)

  110. F. Manca, S. Giordano, P.L. Palla, F. Cleri, On the equivalence of thermodynamics ensembles for flexible polymer chains. Phys. A Stat. Mech. Appl. 395, 154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  111. S. Giordano, Helmholtz and Gibbs ensembles, thermodynamic limit and bistability in polymer lattice models. Continuum Mech. Thermodyn. 30, 459 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  112. A.M. Skvortsov, L.I. Klushin, F.A.M. Leermakers, Negative compressibility and nonequivalence of two statistical ensembles in the escape transition of a polymer chain. J. Chem. Phys. 126, 024905 (2007)

    Article  ADS  Google Scholar 

  113. D.I. Dimitrov, L.I. Klushin, A.M. Skvortsov, A. Milchev, K. Binder, The escape transition of a polymer: a unique case of non-equivalence between statistical ensembles. Eur. Phys. J. E 29, 9 (2009)

    Article  Google Scholar 

  114. A.M. Skvortsov, L.I. Klushin, A.A. Polotsy, K. Binder, Mechanical desorption of a single chain: unusual aspects of phase coexistence at a first-order transition. Phys. Rev. E 85, 031803 (2012)

    Article  ADS  Google Scholar 

  115. S. Dutta, P. Benetatos, Inequivalence of fixed-force and fixed-extension statistical ensembles for a flexible polymer tethered to a planar substrate. Soft Matter 14, 6857 (2018)

    Article  ADS  Google Scholar 

  116. S. Dutta, P. Benetatos, Statistical ensemble inequivalence for flexible polymers under confinement in various geometries. Soft Matter 16, 2114 (2019)

    Article  ADS  Google Scholar 

  117. G. Noh, P. Benetatos, Tensile elasticity of a freely jointed chain with reversible hinges. Soft Matter 17, 3333 (2021)

    Article  ADS  Google Scholar 

  118. J.H. Gibbs, E.A. DiMarzio, Statistical mechanics of helix-coil transitions in biological macromolecules. J. Chem. Phys. 30, 271 (1959)

    Article  ADS  Google Scholar 

  119. D.M. Crothers, N.R. Kallenbach, B.H. Zimm, The melting transition of low-molecular-weight DNA: theory and experiment. J. Mol. Biol. 11, 802 (1965)

    Article  Google Scholar 

  120. C. Kittel, Phase transition of a molecular zipper. Am. J. Phys. 37, 917 (1969)

    Article  ADS  Google Scholar 

  121. K. Nishinari, S. Koide, P.A. Williams, G.O. Phillips, A zipper model approach to the thermoreversible gel–sol transition. J. Phys. 51, 1759 (1990)

    Article  Google Scholar 

  122. H.A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions. Phys. (The Hague) 7, 284 (1940)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  123. I. Benichou, S. Givli, Rate dependent response of nanoscale structures having a multiwell energy landscape. Phys. Rev. Lett. 114, 095504 (2015)

    Article  ADS  Google Scholar 

  124. I. Benichou, Y. Zhang, O.K. Dudko, S. Givli, The rate dependent response of a bistable chain at finite temperature. J. Mech. Phys. Sol. 95, 44 (2016)

    Article  ADS  Google Scholar 

  125. I. Müller, S. Seelecke, Thermodynamic aspects of shape memory alloys. Math. Comput. Model. 34, 1307–1355 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  126. J.H. Lambert, Observationes variae in mathesin puram. Acta Helvetica 3(1), 128–168 (1758)

    Google Scholar 

  127. R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, D.E. Knuth, On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  128. F. R. Gantmacher, The theory of matrices, Vol. 1 and 2 (Chelsea Publishing Company, New York, 1959)

  129. P. Lancaster, M. Tismenetsky, The theory of matrices with applications (Academic, New York, 1985)

    MATH  Google Scholar 

  130. M.J. Ablowitz, A.S. Fokas, Complex Variables Introduction and Applications (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  131. K.W. Breitung, Asymptotic approximations for probability integrals (Springer, Berlin, 1994)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Numerical procedures were performed by AC and LB. Theoretical developments were coordinated by GF, GP and SG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stefano Giordano.

Ethics declarations

Financial interest or non-financial interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Funding

LB, GF and GP have been supported by the Italian Ministry MIUR-PRIN project Mathematics of active materials: From mechanobiology to smart devices (2017KL4EF3) and by ‘Gruppo Nazionale per la Fisica Matematica’ (GNFM) under ‘Istituto Nazionale di Alta Matematica’ (INdAM). GP and GF are supported by the Italian Ministry MISE through the project RAEE SUD-PVP. GF is also supported by ‘Istituto Nazionale di Fisica Nucleare’ (INFN) through the project QUANTUM, by the FFABR research grant (MIUR) and the PON ‘S.I.ADD.’ AC and SG have been supported by Central Lille and Region Hauts-de-France under project MiBaMs.

Data generated

All data generated or analyzed during this study are included in this published article

Appendices

Appendix A: Non-local behavior: relation between the next-to-nearest-neighbor (NNN) interaction strategy and the Ising scheme

The non-local interactions in discrete elastic chains are typically introduced through next-to-nearest-neighbor (NNN) elastic elements [51, 54]. Under specific hypotheses, we prove here that the scheme with the NNN elements can be reconducted to a typical Ising model, widely adopted in previous studies on similar topics [63, 64]. To begin with, we consider a chain of bistable units with additional NNN linear springs to model non-local effects [54]. The Hamiltonian reads

$$\begin{aligned} H =&\sum _{i=1}^{N}\left\{ Q(S_i)+\frac{K(S_i)\ell ^2}{2}\left[ \lambda _i-\lambda _0(S_{i})\right] ^2\right\} \nonumber \\&+\sum _{i=1}^{N-1}\frac{R\ell ^2}{2}[\lambda _{i+1}+\lambda _{i}-\lambda _0(-1)-\lambda _0(+1)]^2, \end{aligned}$$
(A1)

where R is the elastic constant of the NNN springs, and the other quantities are defined in Sect. 2. In particular, we name here \(H_0\) the energy corresponding to the bistable nearest neighbor (NN) elements and \(H_I\) the energy of the NNN linear springs, such that \(H=H_0+H_I\). We assume that the equilibrium length of the NNN elements is fixed at \(L(-1)+L(+1) = (1+\chi )\ell \), and we introduce two different behaviors: an antiferromagnetic one when \(R>0\), and a ferromagnetic one when \(R<0\). In the former case (\(R>0\)), two adjacent units entail a lower energy if they are in two different states (folded and unfolded) while, in the latter one (\(R<0\)), two adjacent units result in a lower energy if they are in the same state (either both folded or both unfolded), as shown in Fig. 15.

Fig. 15
figure 15

Potential energy U of a linear spring representing an arbitrary NNN element. The two cases correspond to the antiferromagnetic (\(R>0\)) and ferromagnetic (\(R<0\)) behaviors of the chain with the NNN linear elastic elements

Supposing that the elastic constants k and \(\alpha k\) are sufficiently large, the Hamiltonian \(H_I\) can be simplified by assuming that the lengths of the units can be approximated with the equilibrium lengths of the explored wells. Then, by using the relations \(\lambda _{i+1}\simeq \lambda _0(S_{i+1})\) and \(\lambda _{i}\simeq \lambda _0(S_{i})\), we get

$$\begin{aligned} \lambda _{i+1}+\lambda _{i} \simeq \lambda _0(S_{i+1})+\lambda _0(S_{i}) =-\frac{S_{i+1}}{2}(1-\chi )-\frac{S_{i}}{2}(1-\chi )+(1+\chi ). \end{aligned}$$
(A2)

Thus, the interaction Hamiltonian becomes

$$\begin{aligned} H_I&\simeq \sum _{i=1}^{N-1}\frac{R\ell ^2}{2}\left[ -\frac{(1-\chi )}{2}(S_{i+1}+S_i)\right] ^2\nonumber \\&= \frac{R}{4}\ell ^2(1-\chi )^2(N-1) - J\sum _{i=1}^{N-1}S_{i+1}S_i, \end{aligned}$$
(A3)

where

$$\begin{aligned} J=-\frac{R}{4}\ell ^2(1-\chi )^2. \end{aligned}$$
(A4)

This proves that we can approximate the behavior of the chain with the NNN elements by means of a classical Ising chain. We observe that when \(J>0\) (\(R<0\)) we are in a ferromagnetic case, and when \(J<0\) (\(R>0\)) in the antiferromagnetic one. For this reason, in this work we adopted the overall Hamiltonian given by Eq. (4), where we neglected the irrelevant constant in \(H_I\).

Appendix B: Helmholtz and Gibbs ensembles in the Ising Model

In this appendix, we show the details of the calculation of the Gibbs and Helmholtz partition functions.

1.1 B.1 Gibbs ensemble

For the Gibbs ensemble, using Eq. (5), the partition function can be evaluated as

$$\begin{aligned} \begin{aligned} Z_G({\tilde{f}}) =\,\,&\ell ^N\displaystyle {\sum _{\{S_i\}}}\int _{{\mathbb {R}}^{N}} e^{-{\tilde{\beta }}({\tilde{H}}-{\tilde{f}}\sum _{i=1}^N\lambda _i)}\mathrm {d}\lambda _1 \dots \mathrm {d}\lambda _N\\ =\,\,&\ell ^N\displaystyle {\sum _{\{S_i\}}} e^{-{\tilde{\beta }}\left( \sum _{i=1}^{N} {\tilde{Q}}(S_i)-\sum _{i=1}^{N-1} S_iS_{i+1}\right) } \\&\times \displaystyle {\int _{{\mathbb {R}}^{N}}}e^{ -{\tilde{\beta }}\sum _{i=1}^{N}\left[ \frac{{\tilde{K}}(S_i)}{2}\left( \lambda _i -\lambda _0(S_{i})\right) ^2- {\tilde{f}}\lambda _i\right] } \mathrm {d}\lambda _1\dots \mathrm {d}\lambda _N, \end{aligned} \end{aligned}$$
(B5)

where \({\tilde{f}}\) is the dimensionless force applied to the last unit of the chain. Each sum on \(S_i\) (\(i=1,\dots ,N\)) must be interpreted as a sum over the values \(+1\) and \(-1\). By a Gaussian integration we obtain

$$\begin{aligned} Z_G({\tilde{f}}) =\ell ^N\sum _{\{S_i\}}e^{{\tilde{\beta }}\sum _{i=1}^{N-1}S_iS_{i+1}}\prod _{i=1}^{N}\sqrt{\frac{2\pi }{{\tilde{\beta }} {\tilde{K}}(S_i)}}e^{{\tilde{\beta }}\left( \frac{{\tilde{f}}^2}{2{\tilde{K}}(S_i)}+\lambda _0(S_{i}){\tilde{f}}-{\tilde{Q}}(S_i)\right) }. \end{aligned}$$
(B6)

We can define

$$\begin{aligned} c(S_i)=\sqrt{\frac{2\pi }{{\tilde{\beta }} {\tilde{K}}(S_i)}}e^{{\tilde{\beta }}\left( \frac{{\tilde{f}}^2}{2{\tilde{K}}(S_i)}+\lambda _0(S_{i}){\tilde{f}}-{\tilde{Q}}(S_i)\right) }, \end{aligned}$$
(B7)

so that we obtain

$$\begin{aligned} \begin{aligned} Z_G({\tilde{f}})= \ell ^N\displaystyle {\sum _{\{S_i\}}} \sqrt{c(S_1)}\left[ \prod _{i=1}^{N-1}e^{{\tilde{\beta }} S_i S_{i+1}} \sqrt{c(S_i)c(S_{i+1})}\right] \sqrt{c(S_N)}. \end{aligned} \end{aligned}$$
(B8)

In order to explicitly evaluate the summation, we can use the transfer matrix method [86]. We obtain

$$\begin{aligned} Z_G({\tilde{f}})={\varvec{w}}^\intercal {\varvec{T}}^{N-1}{\varvec{w}}, \end{aligned}$$
(B9)

where we have defined the transfer matrix \({\varvec{T}}\) and the vector \({\varvec{w}}\) (taking care of the boundary conditions) as follows:

$$\begin{aligned} \begin{aligned} {\varvec{T}}&=\begin{bmatrix} e^{{\tilde{\beta }} }c_- &{} e^{-{\tilde{\beta }} }\sqrt{c_+c_-} \\ e^{-{\tilde{\beta }} }\sqrt{c_+c_-} &{} e^{{\tilde{\beta }} }c_+ \end{bmatrix}, \\ {\varvec{w}}&=\begin{pmatrix}\sqrt{c_-}\\ \sqrt{c_+ } \end{pmatrix}, \end{aligned} \end{aligned}$$
(B10)

with, see Eq. (B7),

$$\begin{aligned} c_+\triangleq c(+1), \quad c_-\triangleq c(-1). \end{aligned}$$
(B11)

By using the standard matrix functions theory [128, 129], we have

$$\begin{aligned} {\varvec{T}}^{N-1}=\frac{{{\hat{\lambda }}_1}^{N-1}-{\hat{\lambda }_2}^{N-1}}{{{\hat{\lambda }}_1}-{\hat{\lambda }_2}}{\varvec{T}}+\frac{{{\hat{\lambda }}_1}{\hat{\lambda }_2}^{N-1}-{{\hat{\lambda }}_1}^{N-1}{{\hat{\lambda }}_2}}{{\hat{\lambda }_1}-{{\hat{\lambda }}_2}}{\varvec{I}}, \end{aligned}$$
(B12)

where \({\varvec{I}}\) is the \(2\times 2\) identity matrix and \(\hat{\lambda }_{1,2}\) are the eigenvalues of \({\varvec{T}}\), namely

$$\begin{aligned} {\hat{\lambda }}_{1,2}= & {} \frac{e^{{\tilde{\beta }}}}{2} \left[ c_+ + c_- \pm \sqrt{ \left( c_+-c_-\right) ^2+4 c_+c_-e^{-4{\tilde{\beta }}}} \right] \nonumber \\= & {} \frac{e^{{\tilde{\beta }}}}{2} \left( c_+ + c_- \pm \sqrt{ \Delta } \right) . \end{aligned}$$
(B13)

In Eq. (B13), \({{\hat{\lambda }}_1}\) (\({{\hat{\lambda }}_2}\)) corresponds to the \(+\) (−) sign and we have also defined

$$\begin{aligned} \Delta =\left( c_+-c_-\right) ^2+4 c_+c_-e^{-4{\tilde{\beta }}}. \end{aligned}$$
(B14)

By substituting \({\hat{\lambda }}_{1,2}\) into Eqs. (B9) and (B12), we get the partition function given in Eq. (8).

1.2 B.2 Helmholtz ensemble

We consider here the case with fixed \(x_N\) (isometric condition), described by the Helmholtz ensemble, and evaluate the canonical partition function \(Z_H(x_N)\). The partition functions in the Gibbs and Helmholtz ensembles are linked by a Laplace transform [87]

$$\begin{aligned} Z_G(f)=\int _{-\infty }^{+\infty }Z_H(x_N)\,e^{\beta f x_N}\mathrm {d}x_N. \end{aligned}$$
(B15)

Thus, one can write \(Z_H(x_N)\), using the change of variable \(f\rightarrow - i \omega /\beta \), as an inverse Fourier transform in the complex plane

$$\begin{aligned} Z_H(x_N)=\frac{1}{2\pi }\int _{-\infty }^{+\infty }Z_G\left( -\frac{i\omega }{\beta }\right) \,e^{ i\omega x_N } \mathrm {d}\omega . \end{aligned}$$
(B16)

To simplify the notation and perform the calculation, we define

$$\begin{aligned} \delta _{1,2}=e^{-{\tilde{\beta }}}\,{\hat{\lambda }}_{1,2}=\frac{1}{2} \left( c_+ + c_- \pm \sqrt{ \Delta } \right) . \end{aligned}$$
(B17)

Thus, the Gibbs partition function can be written as

$$\begin{aligned} Z_G({\tilde{f}}) =\frac{(\ell e^{{\tilde{\beta }}})^N}{2\cosh {\tilde{\beta }}} \left[ \delta _1^N \left( 1+e^{-2{\tilde{\beta }}}\frac{\delta _1+\delta _2}{\delta _1-\delta _2} \right) +\delta _2^N\left( 1-e^{-2{\tilde{\beta }}}\frac{\delta _1+\delta _2}{\delta _1-\delta _2}\right) \right] . \end{aligned}$$
(B18)

By using the Newton binomial rule to expand the powers \(\delta _1^N\) and \(\delta _2^N\), we find

$$\begin{aligned} \begin{aligned} Z_G({\tilde{f}}) =&\left( \frac{\ell e^{{\tilde{\beta }}}}{2}\right) ^N\frac{1}{2\cosh {\tilde{\beta }}} \left\{ \sum _{k=0}^N \left( {\begin{array}{c}N\\ k\end{array}}\right) (c_++c_-)^{N-k}\Delta ^{\frac{k}{2}} \left[ 1+(-1)^k \right] \right. \\&\left. +\sum _{k=0}^N\left( {\begin{array}{c}N\\ k\end{array}}\right) (c_++c_-)^{N-k+1}e^{-2{\tilde{\beta }}}\Delta ^{\frac{k-1}{2}} \left[ 1-(-1)^k\right] \right\} . \end{aligned} \end{aligned}$$
(B19)

Here, we can separate the even and odds terms as follows

$$\begin{aligned} \sum _{k=0}^Na_k=\sum _{k=0}^{\left[ \frac{N}{2}\right] }a_{2k}+\sum _{k=0}^{\left[ \frac{N-1}{2}\right] }a_{2k+1}, \end{aligned}$$
(B20)

where the square brackets in the sums stand for the floor function defined as \(\left[ x\right] =\max \left\{ n\in {\mathbb {Z}}\vert n\le x \right\} \). Then, we get

$$\begin{aligned} \begin{array}{ll} Z_{G}({\tilde{f}})= &{} \frac{(\ell e^{{\tilde{\beta }}})^N}{2^{N}\cosh {\tilde{\beta }}}\left\{ \sum _{k=0}^{\left[ \frac{N}{2}\right] }\left( {\begin{array}{c}N\\ 2k\end{array}}\right) (c_++c_-)^{N-2k}\Delta ^k\right. \\ &{}+\left. e^{-2{\tilde{\beta }}}\sum _{k=0}^{\left[ \frac{N-1}{2}\right] }\left( {\begin{array}{c}N\\ 2k+1\end{array}}\right) (c_++c_-)^{N-2k}\Delta ^{k}\right\} . \end{array} \end{aligned}$$
(B21)

We can further develop the powers \(\Delta ^k\) and \((c_++c_-)^{N-2j}\) through the Newton binomial rule, obtaining

$$\begin{aligned} \begin{array}{ll} Z_G({\tilde{f}}) =&{}\frac{(\ell e^{{\tilde{\beta }}})^N}{2^{N}\cosh {\tilde{\beta }}}\Biggl \{\sum _{k=0}^{\left[ \frac{N}{2}\right] }\sum _{j=0}^k\sum _{s=0}^{N-2j}\left( {\begin{array}{c}N\\ 2k\end{array}}\right) \left( {\begin{array}{c}k\\ j\end{array}}\right) \left( {\begin{array}{c}N-2j\\ s\end{array}}\right) \Biggr .\\ &{}\times c_-^{N-j-s}c_+^{j+s}(-1)^j4^{j}\left( 1-e^{-4{\tilde{\beta }}}\right) ^j \\ &{}+e^{-2{\tilde{\beta }}}\sum _{k=0}^{\left[ \frac{N-1}{2}\right] }\sum _{j=0}^k\sum _{s=0}^{N-2j}\left( {\begin{array}{c}N\\ 2k+1\end{array}}\right) \left( {\begin{array}{c}k\\ j\end{array}}\right) \left( {\begin{array}{c}N-2j\\ s\end{array}}\right) \\ &{}\Biggl .\times c_-^{N-j-s}c_+^{j+s}(-1)^j4^{j}\left( 1-e^{-4{\tilde{\beta }}}\right) ^j\Biggr \}. \end{array} \end{aligned}$$
(B22)

Finally, Eq. (B16) can be evaluated, yielding the canonical partition function within the Helmholtz ensemble given in Eqs. (14) and (15).

Appendix C: Asymptotic force–extension relation for the zipper model under isometric condition

Let us then introduce the average chain stretch \({\bar{\lambda }} = \frac{x_N}{\ell N}\), prescribed to the chain under isometric condition. By using Eqs. (16) and (51), we obtain the force–extension relation in the form

$$\begin{aligned} \langle {\tilde{f}} \rangle = \frac{ (F_0G_0+F_NG_N)\left( 1-e^{-2{\tilde{\beta }}}\right) +e^{-2{\tilde{\beta }}}\displaystyle \sum \nolimits _{\xi =0}^NF(\xi )G(\xi ) }{ (F_0+F_N)\left( 1-e^{-2{\tilde{\beta }}}\right) +e^{-2{\tilde{\beta }}}\displaystyle \sum \nolimits _{\xi =0}^NF(\xi ) }, \end{aligned}$$
(C23)

where we introduced the following functions:

$$\begin{aligned} \begin{aligned} G(\xi )=&{\hat{k}}\left( \frac{\xi }{N}\right) \frac{(N-\xi )({\bar{\lambda }}-1)+ \xi ({\bar{\lambda }}-\chi )}{N},\\ F(\xi )=&\frac{\exp \left\{ -{\tilde{\beta }}\left[ {\hat{k}}\left( \frac{\xi }{N}\right) \frac{[(N-\xi )({\bar{\lambda }}-1)+ \xi (\bar{\lambda }-\chi )]^2}{2\,N}+\Delta {\tilde{E}}\xi \right] \right\} }{\sqrt{N\alpha ^{\xi }/{\hat{k}}\left( \frac{\xi }{N}\right) }}, \end{aligned} \end{aligned}$$
(C24)

we defined the rescaled global stiffness of the system (with \(0\le t\le 1\))

$$\begin{aligned} {\hat{k}}(t)=\left( \frac{1-t}{{\tilde{k}}}+\frac{t}{\alpha {\tilde{k}}}\right) ^{-1}, \end{aligned}$$
(C25)

and we used the compact notations \(F_0=F(0),G_0=G(0),F_N=F(N),G_N=G(N)\). Let us now consider the behavior in the thermodynamical limit \(N\rightarrow \infty \). By following the approach suggested in Refs. [65, 66] to obtain explicit analytical results, not only for the stress plateau but also for the stress peak, we may consider the Euler–MacLaurin (EM) approximation for a given function \(\phi \)

$$\begin{aligned} \sum _{\xi =0}^N\phi (\xi ) \simeq \int _0^N\phi (\xi )\mathrm {d}\xi +\frac{\phi (0)+\phi (N)}{2}, \end{aligned}$$
(C26)

where higher-order terms of the EM approximation would lead to more detailed, but analytically cumbersome results. Thus, from Eq. (C23) we get

$$\begin{aligned} \langle {\tilde{f}} \rangle = \frac{ (F_0G_0+F_NG_N)\left( 1-\frac{e^{-2{\tilde{\beta }}}}{2}\right) +e^{-2{\tilde{\beta }}}\int _{0}^N F(\xi )G(\xi )\mathrm {d}\xi }{ (F_0+F_N)\left( 1-\frac{e^{-2{\tilde{\beta }}}}{2}\right) +e^{-2{\tilde{\beta }}}\int _{0}^N F(\xi )\mathrm {d}\xi }. \end{aligned}$$
(C27)

To simplify the calculation, we may rewrite the integrals as

$$\begin{aligned} \int _0^NF(\xi )\mathrm {d}\xi =&\,\sqrt{N}\int _0^1e^{Ng(\eta )}\sqrt{{\hat{k}}(\eta )}\mathrm {d}\eta , \end{aligned}$$
(C28)
$$\begin{aligned} \int _0^NF(\xi )G(\xi )\mathrm {d}\xi =&\,\sqrt{N}\int _0^1e^{Ng(\eta )}\sqrt{{\hat{k}}(\eta )}f(\eta )\mathrm {d}\eta , \end{aligned}$$
(C29)

where we introduced the phase fraction \(\eta =\xi /N\) and the auxiliary functions

$$\begin{aligned} g(\eta )=&\frac{\eta }{2}\log \frac{1}{\alpha }-{\tilde{\beta }}\left( \eta \Delta {\tilde{E}}+{\hat{k}}(\eta )\frac{[(1-\eta )({\bar{\lambda }}-1)+ \eta ({\bar{\lambda }}-\chi )]^2}{2}\right) , \end{aligned}$$
(C30)
$$\begin{aligned} f(\eta )=&{\hat{k}}(\eta )\left[ (1-\eta )({\bar{\lambda }}-1)+ \eta ({\bar{\lambda }}-\chi )\right] . \end{aligned}$$
(C31)

Now, we use the following general results [130, 131]. Let

$$\begin{aligned} I(x)=\int _a^b e^{\,x\,\,{\mathcal {G}}(t)}{\mathcal {F}}(t)\mathrm {d}t, \end{aligned}$$
(C32)

then, we have

1. Suppose \({\mathcal {F}}\) is bounded and continuous on \((a,\,b)\), and \({\mathcal {F}}(a){\mathcal {F}}(b)\ne 0\). Suppose also that \({\mathcal {G}}\) is strictly monotone and differentiable and that \(\frac{{\mathcal {F}}(a)}{{\mathcal {G}}'(a)}\) and \(\frac{{\mathcal {F}}(b)}{{\mathcal {G}}'(b)}\) both exist as finite reals, defined as limits if either endpoint is infinite. Assume also that the integral in Eq. (C32) exists for all \(x>0\). Then, we have that

$$\begin{aligned} I(x)\underset{x\rightarrow \infty }{\sim }\frac{1}{x}\frac{{\mathcal {F}}(b)}{{\mathcal {G}}'(b)}e^{\,x\,\,{\mathcal {G}}(b)}-\frac{1}{x}\frac{{\mathcal {F}}(a)}{{\mathcal {G}}'(a)}e^{\,x\,\,{\mathcal {G}}(a)}. \end{aligned}$$
(C33)

2. Suppose \({\mathcal {F}}\) is bounded and continuous on \((a,\,b)\), that \({\mathcal {G}}\) has unique maximum at some c in the open interval \((a,\,b)\), \({\mathcal {G}}\) is differentiable in some neighborhood of c, \({\mathcal {G}}''(c)\) exists and is \({\mathcal {G}}''(c)<0\), and that \({\mathcal {F}}(c)\ne 0\). Then, we have that

$$\begin{aligned} I(x)\underset{x\rightarrow \infty }{\sim }\frac{\sqrt{2\pi }{\mathcal {F}}(c)e^{\,x\,\,{\mathcal {G}}(c)}}{\sqrt{-x{\mathcal {G}}''(c)}}. \end{aligned}$$
(C34)

We use the results in Eqs. (C33) and (C34) to analyze the behavior of the integrals defined in Eqs. (C28) and (C29). First, by using Eq. (C30), we obtain

$$\begin{aligned} \begin{aligned} \frac{\partial g}{\partial \eta }=&{\tilde{\beta }}{\hat{k}}(\eta )\left[ (1-\eta )({\bar{\lambda }}-1)+ \eta ({\bar{\lambda }}-\chi )\right] (\chi -1)-{\tilde{\beta }}\Delta {\tilde{E}}+\frac{1}{2}\log \frac{1}{\alpha }\\&+\frac{{\tilde{\beta }}[{\hat{k}}(\eta )]^2}{2}[(1-\eta )({\bar{\lambda }}-1)+ \eta (\bar{\lambda }-\chi )]^2\left( \frac{1}{\alpha {\tilde{k}}}-\frac{1}{{\tilde{k}}}\right) . \end{aligned} \end{aligned}$$
(C35)

Solving \(\frac{\partial g}{\partial \eta }=0\), we obtain the solution \(\eta _0\) that represents the stationary point to be computed. Thus, following the definition in Eq. (C31), we also introduce the value

$$\begin{aligned} {\tilde{f}}_0={\tilde{f}}(\eta _0)={\hat{k}}(\eta _0)\left[ (1-\eta _0)(\bar{\lambda }-1)+ \eta _0({\bar{\lambda }}-\chi )\right] . \end{aligned}$$
(C36)

We observe that the equation \(\frac{\partial g}{\partial \eta }=0\) can be written in terms of \({\tilde{f}}_0\) as

$$\begin{aligned} \frac{1}{2}\log \left( \frac{1}{\alpha }\right) -{\tilde{\beta }}\left[ \Delta {\tilde{E}}-(\chi -1){\tilde{f}}_0-\left( \frac{1}{\alpha }-1\right) \frac{{\tilde{f}}_0^2}{2{\tilde{k}}}\right] =0, \end{aligned}$$
(C37)

that coincides with Eq. (29) (i.e., with \(\delta =0\)). Thus, we identify \({\tilde{f}}_0\) with the Maxwell force \({\tilde{f}}_M\). Now, we can use Eq. (C34) (stationary phase theorem) to simplify Eqs. (C28) and (C29) only if \(0<\eta _0<1\) (the stationary point must be within the integration interval). For \(\eta _0=0\), we have \({\tilde{f}}_0=(\bar{\lambda }-1){\tilde{k}}\), and for \(\eta _0=1\), we have \({\tilde{f}}_0=(\bar{\lambda }-\chi )\alpha {\tilde{k}}\), as given by Eq. (C36). Hence, the interval \(0<\eta _0<1\) is equivalent to \(1+\frac{{\tilde{f}}_0}{{\tilde{k}}}<\bar{\lambda }<\chi +\frac{{\tilde{f}}_0}{\alpha {\tilde{k}}}\), which corresponds to the force plateau region between the two elastic branches. Therefore, only in the plateau interval we have a stationary point and we can approximate Eqs. (C28) and (C29) with Eq. (C34). The application of the stationary phase method is further justified by the relation \(g''(\eta _0)<0\), simply proved by a direct evaluation

$$\begin{aligned} g''(\eta _0)= -{\tilde{\beta }}{\hat{k}}(\eta _0)\left[ \left( \chi +\frac{{\tilde{f}}_0}{\alpha {\tilde{k}}}\right) -\left( 1+\frac{{\tilde{f}}_0}{{\tilde{k}}}\right) \right] ^2<0. \end{aligned}$$
(C38)

Note that from now on, we use the notation \({\tilde{f}}_M\) for the quantity \({\tilde{f}}_0\), to be consistent with previous Sections. We obtain from Eq. (C27) the expression

$$\begin{aligned} \langle {\tilde{f}} \rangle = \frac{{\mathcal {C}}_N\left[ e^{\,\Delta g_0 N}({\bar{\lambda }}-1){\tilde{k}}^{\frac{1}{2}}+e^{\,\Delta g_1 N}(\bar{\lambda }-\chi )(\alpha {\tilde{k}})^{\frac{3}{2}}\right] +{\tilde{f}}_M}{{\mathcal {C}}_N\left[ \sqrt{{\tilde{k}}}\,\,e^{\,\Delta g_0 N}+\sqrt{\alpha {\tilde{k}}}\,\,e^{\,\Delta g_1 N}\right] +1}, \end{aligned}$$
(C39)

where

$$\begin{aligned} \Delta g_0=&g(0)-g(\eta _0)=-\frac{{\tilde{\beta }}{\tilde{k}}}{2}\left[ {\bar{\lambda }}-\left( 1+\frac{{\tilde{f}}_M}{{\tilde{k}}}\right) \right] ^2,\end{aligned}$$
(C40)
$$\begin{aligned} \Delta g_1=&g(1)-g(\eta _0)=-\frac{{\tilde{\beta }}\alpha {\tilde{k}}}{2}\left[ {\bar{\lambda }}-\left( \chi +\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}\right) \right] ^2, \end{aligned}$$
(C41)
$$\begin{aligned} {\mathcal {C}}_N=&\frac{2 \,e^{\,2{\tilde{\beta }}}-1}{2 }\sqrt{\frac{{\tilde{\beta }}}{2\pi \,N}}\left[ \chi +\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}-\left( 1+\frac{{\tilde{f}}_M}{{\tilde{k}}}\right) \right] . \end{aligned}$$
(C42)

This is the main result given in Eqs. (52)–(55) of the main text. Considering that \(\Delta g(0)<0\) and \(\Delta g(1)<0\) (since \(g(\eta _0)\) is the maximum value of \(g(\eta )\) in the interval \(0<\eta <1\)), we may prove that in the thermodynamic limit

$$\begin{aligned} \lim _{N\rightarrow \infty }\langle {\tilde{f}}\rangle = {\tilde{f}}_M, \end{aligned}$$
(C43)

which is valid for \(1+\frac{{\tilde{f}}_M}{{\tilde{k}}}<\bar{\lambda }<\chi +\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}\), and meaning that the Maxwell force is the same for both the Helmholtz and Gibbs ensembles, proving their equivalence for the zipper model.

In order to conclude the analysis, we have to simplify Eq. (C27) also for the external regions, i.e., for \({\bar{\lambda }}<1+\frac{{\tilde{f}}_M}{{\tilde{k}}}\) and \(\bar{\lambda }>\chi +\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}\). Hence, we suppose that the critical point \(\eta _0\) is external to the interval (0, 1). We can have either \(\eta _0<0\) or \(\eta _0>1\). In these cases, the asymptotic behavior of the integrals in Eqs. (C28) and (C29) is described by Eq. (C33). Then, Eq. (C27) assumes the form

$$\begin{aligned} \langle {\tilde{f}}\rangle = \frac{e^{Ng(0)}{\tilde{k}}^{\frac{3}{2}}(\bar{\lambda }-1)+e^{Ng(1)}(\alpha {\tilde{k}})^{\frac{3}{2}}(\bar{\lambda }-\chi )+\frac{2}{2e^{2{\tilde{\beta }}}-1}{\mathcal {A}}}{e^{Ng(0)}\sqrt{{\tilde{k}}}+e^{Ng(1)}\sqrt{\alpha {\tilde{k}}}+\frac{2}{2e^{2{\tilde{\beta }}}-1}{\mathcal {B}}}, \end{aligned}$$
(C44)

where

$$\begin{aligned} {\mathcal {A}}=&\frac{(\alpha {\tilde{k}})^{\frac{3}{2}}}{g'(1)}e^{Ng(1)}({\bar{\lambda }}-\chi )-\frac{{\tilde{k}}^{\frac{3}{2}}}{g'(0)}e^{Ng(0)}({\bar{\lambda }}-1),\end{aligned}$$
(C45)
$$\begin{aligned} {\mathcal {B}}=&\frac{\sqrt{\alpha {\tilde{k}}}}{g'(1)}e^{Ng(1)}-\frac{\sqrt{{\tilde{k}}}}{g'(0)}e^{Ng(0)}. \end{aligned}$$
(C46)

Now, by using Eq. (C37), we determine the quantity \(g(1)-g(0)\) that eventually reads

$$\begin{aligned} g(1)-g(0)=\frac{{\tilde{\beta }}{\tilde{k}}}{2}\left[ \left( \bar{\lambda }-1-\frac{{\tilde{f}}_M}{{\tilde{k}}}\right) ^2 -\alpha \left( \bar{\lambda }-\chi -\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}\right) ^2\right] . \end{aligned}$$
(C47)

Accordingly, in the limit of \(N\rightarrow \infty \) we obtain

$$\begin{aligned} g(1)-g(0) \left\{ \begin{aligned}&>0 \,\,\,\,\,\, \text {if} \,\,\,\,\,\, {\bar{\lambda }}>\chi +\frac{{\tilde{f}}_M}{\alpha {\tilde{k}}}\Rightarrow \langle {\tilde{f}}\rangle =\alpha {\tilde{k}} ({\bar{\lambda }}-\chi ),\\&<0 \,\,\,\,\,\, \text {if} \,\,\,\,\,\, {\bar{\lambda }}<1+\frac{{\tilde{f}}_M}{{\tilde{k}}}\Rightarrow \langle {\tilde{f}}\rangle ={\tilde{k}} ({\bar{\lambda }}-1),\\ \end{aligned} \right. \end{aligned}$$
(C48)

a result representing the elastic branches in the external regions, corresponding to the fully folded (left) and fully unfolded (right) phases. This completes the proof of the equivalence of the ensembles in the thermodynamic limit for the zipper model.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cannizzo, A., Bellino, L., Florio, G. et al. Thermal control of nucleation and propagation transition stresses in discrete lattices with non-local interactions and non-convex energy. Eur. Phys. J. Plus 137, 569 (2022). https://doi.org/10.1140/epjp/s13360-022-02790-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02790-9

Navigation