Abstract
The mechanics of fiber bundles has been largely investigated in order to understand their complex failure modes. Under a mechanical load, the fibers fail progressively while the load is redistributed among the unbroken fibers. The classical fiber bundle model captures the most important features of this rupture process. On the other hand, the homogenization techniques are able to evaluate the stiffness degradation of bulk solids with a given population of cracks. However, these approaches are inadequate to determine the effective response of a degraded bundle where breaks are induced by non-mechanical actions. Here, we propose a method to analyze the behavior of a fiber bundle, undergoing a random distribution of breaks, by considering the intrinsic response of the fibers and the visco-elastic interactions among them. We obtain analytical solutions for simple configurations, while the most general cases are studied by Monte Carlo simulations. We find that the degradation of the effective bundle stiffness can be described by two scaling regimes: a first exponential regime for a low density of breaks, followed by a power-law regime at increasingly higher break density. For both regimes, we find analytical effective expressions described by specific scaling exponents.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
S.M. Rafelsky, J.A. Theriot, Annu. Rev. Biochem. 73, 209 (2004).
B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Nature 399, 761 (1999).
P. Fratzl, Curr. Opin. Colloid Interface Sci. 8, 32 (2003).
A.B. Dalton, S. Collins, E. Munoz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Coleman, B.G. Kim, R.H. Baughman, Nature 423, 703 (2003).
T. Giesa, M. Arslan, N.M. Pugno, M.J. Buehler, Nanoletters 11, 5038 (2011).
M. Buehler, Nano Today 5, 379 (2010).
Y. Liu, S. Thomopoulos, C. Chen, V. Birman, M.J. Buehler, G.M. Genin, J. R. Soc. Interface 11, 20130835 (2014).
N.M. Pugno, F. Bosia, T. Abdalrahman, Phys. Rev. E 85, 011903 (2012).
G.M. Grason, Phys. Rev. Lett. 105, 045502 (2010).
N.S. Gov, Phys. Rev. E 78, 011916 (2008).
S.W. Cranford, J. R. Soc. Interface 10, 20130148 (2013).
H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan, Science 296, 884 (2002).
D. Wang, P. Song, C. Liu, W. Wu, S. Fan, Nanotechnology 19, 075609 (2008).
K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 19, 1362 (2004).
L. Liu, W. Ma, Z. Zhang, Small 7, 1504 (2011).
S. Kumar, T.D. Dang, F.E. Arnold, A.R. Bhattacharyya, B.G. Min, X. Zhang, R.A. Vaia, C. Park, W.W. Adams, R.H. Hauge, R.E. Smalley, S. Ramesh, P.A. Willis, Macromolecules 35, 9039 (2002).
N.M. Pugno, F. Bosia, A. Carpinteri, Small 4, 1044 (2008).
S. Pradhan, A. Hansen, B.K. Chakrabarti, Rev. Mod. Phys. 82, 499 (2010).
H. Kawamura, T. Hatano, N. Kato, S. Biswas, B.K. Chakrabarti, Rev. Mod. Phys. 84, 839 (2012).
F.T. Peirce, J. Text. Ind. 17, T355 (1926).
H.E. Daniels, Proc. R. Soc. London, Ser. A 183, 405 (1945).
D.G. Harlow, S.L. Phoenix, J. Compos. Mater. 12, 195 (1978).
D.G. Harlow, S.L. Phoenix, J. Mech. Phys. Solids 39, 173 (1991).
D. Sornette, J. Phys. A 22, L243 (1989).
P.M. Duxbury, P.L. Leath, Phys. Rev. B 49, 12676 (1994).
S. Zapperi, P. Ray, H.E. Stanley, A. Vespignani, Phys. Rev. Lett. 78, 1408 (1997).
M. Kloster, A. Hansen, P.C. Hemmer, Phys. Rev. E 56, 2615 (1997).
P. Bhattacharyya, S. Pradhan, B.K. Chakrabarti, Phys. Rev. E 67, 046122 (2003).
J.B. Gómez, D. Iñiguez, A.F. Pacheco, Phys. Rev. Lett. 71, 380 (1993).
A. Hansen, P.C. Hammer, Phys. Lett. A 184, 394 (1994).
R.C. Hidalgo, F. Kun, H.J. Herrmann, Phys. Rev. E 65, 032502 (2002).
D.C. Lagoudas, C.Y. Hui, S.L. Phoenix, Int. J. Solids Struct. 25, 45 (1989).
D.D. Mason, C.Y. Hui, S.L. Phoenix, Int. J. Solids Struct. 29, 2829 (1992).
I.J. Beyerlein, S.L. Phoenix, R. Raj, Int. J. Solids Struct. 35, 3177 (1998).
I.J. Beyerlein, S.L. Phoenix, J. Mech. Phys. Solids 44, 1997 (1996).
F. Raischel, F. Kun, H.J. Herrmann, Phys. Rev. E 73, 066101 (2006).
R.C. Hidalgo, F. Kun, H.J. Herrmann, Phys. Rev. E 64, 066122 (2001).
R.C. Hidalgo, F. Kun, K. Kovcs, I. Pagonabarraga, Phys. Rev. E 80, 051108 (2009).
F. Kun, S. Nagy, Phys. Rev. E 77, 016608 (2008).
U. Divakaran, A. Dutta, Phys. Rev. E 78, 021118 (2008).
C. Roy, S. Kundu, S.S. Manna, Phys. Rev. E 87, 062137 (2013).
K. Kovács, R.C. Hidalgo, I. Pagonabarraga, F. Kun, Phys. Rev. E 87, 042816 (2013).
K.S. Gjerden, A. Stormo, A. Hansen, Phys. Rev. Lett. 111, 135502 (2013).
L.J. Walpole, Adv. Appl. Mech. 11, 169 (1981).
Z. Hashin, J. Appl. Mech. 50, 481 (1983).
T. Mura, Micromechanics of Defects in Solids (Kluwer Academic Publishers, Dordrecht, 1991).
Z. Hashin, S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
Z. Hashin, S. Shtrikman, J. Mech. Phys. Solids 10, 335 (1962).
S. Torquato, J. Mech. Phys. Solids 45, 1421 (1997).
S. Torquato, J. Mech. Phys. Solids 46, 1411 (1998).
J.G. Berryman, J. Acoust. Soc. Am. 68, 1820 (1980).
M. Avellaneda, Commun. Pure Appl. Math. 40, 527 (1987).
R. McLaughlin, Int. J. Eng. Sci. 15, 237 (1977).
S. Giordano, Eur. J. Mech. A. Solids 22, 885 (2003).
J.D. Eshelby, Proc. R. Soc. A 241, 376 (1957).
M. Kachanov, Appl. Mech. Rev. 45, 305 (1992).
M. Kachanov, Adv. Appl. Mech. 30, 259 (1994).
S. Giordano, L. Colombo, Phys. Rev. Lett. 98, 055503 (2007).
S. Giordano, L. Colombo, Phys. Rev. B 77, 054106 (2008).
S. Giordano, P.L. Palla, Eur. Phys. J. B 85, 59 (2012).
S. Giordano, A. Mattoni, L. Colombo, Rev. Comput. Chem. 27, 1 (2011).
Y. Kashida, M. Kato, Antimicrob. Agents Chemother. 41, 2389 (1997).
P. Cao, J.-i. Hanai, P. Tanksale, S. Imamura, V.P. Sukhatme, S.H. Lecker, FASEB J. 23, 2844 (2009).
J.F. Ward, Int. J. Radiat. Biol. 57, 1141 (1990).
G. Perret, P.-T. Chiang, T. Lacornerie, M. Kumemura, N. Lafitte, H. Guillou, L. Jalabert, E. Lartigau, T. Fujii, F. Cleri, H. Fujita, D. Collard, in Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference, Osaka, 2013 (IEEE, New York, 2013) p. 6820.
F. Manca, S. Giordano, P.L. Palla, G. Perret, E. Lartigau, D. Collard, H. Fujita, F. Cleri, European Materials Research Society Spring Meeting, E-MRS Spring 2014, Lille, Symposium N - Converging technology for nanobio-applications.
M. Kumemura, D. Collard, S. Yoshizawa, D. Fourmy, N. Lafitte, S. Takeuchi, T. Fujii, L. Jalabert, H. Fujita, in International Conference on Micro Electro Mechanical Systems (MEMS2010), Hong Kong (IEEE, New York, 2010) p. 915.
M. Kumemura, D. Collard, R. Tourvielle, N. Lafitte, K. Montagne, S. Yoshizawa, D. Fourmy, C. Yamahata, L. Jalabert, Y. Sakai, S. Takeuchi, T. Fujii, H. Fujita, in International Conference on Micro Electro Mechanical Systems (MEMS2011), Cancún (IEEE, New York, 2011) p. 67.
E.S. Ibrahim, Electric Power Syst. Res. 52, 9 (1999).
R. Betti, A. West, G. Vermaas, Y. Cao, J. Bridge Eng. 10, 151 (2005).
J.P. Broomfield, Corrosion of Steel in Concrete (Taylor & Francis, New York, 2007).
D. Cohen, P. Lehmann, D. Or, Water Resour. Res. 45, W10436 (2009).
Y. Matsushi, Y. Matsukura, Bull. Eng. Geol. Env. 65, 449 (2006).
F. Manca, S. Giordano, P.L. Palla, F. Cleri, Phys. Rev. Lett. 113, 255501 (2014).
F. Cleri, Sci. Model. Simul. 15, 369 (2008).
F. Manca, S. Giordano, P.L. Palla, R. Zucca, F. Cleri, L. Colombo, J. Chem. Phys. 136, 154906 (2012).
F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, J. Chem. Phys. 137, 244907 (2012).
F. Manca, S. Giordano, P.L. Palla, F. Cleri, L. Colombo, Phys. Rev. E 87, 032705 (2013).
F. Manca, S. Giordano, P.L. Palla, F. Cleri, Physica A 395, 154 (2014).
D. Collard, Private communications (2014).
M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1970).
F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (National Institute of Standards and Technology and Cambridge University Press, New York, 2010).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Manca, F., Giordano, S., Palla, P.L. et al. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions. Eur. Phys. J. E 38, 44 (2015). https://doi.org/10.1140/epje/i2015-15044-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1140/epje/i2015-15044-1