Mesoscopic models for DNA stretching under force: New results and comparison with experiments | The European Physical Journal E Skip to main content
Log in

Mesoscopic models for DNA stretching under force: New results and comparison with experiments

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Single-molecule experiments on double-stranded B-DNA stretching have revealed one or two structural transitions, when increasing the external force. They are characterized by a sudden increase of DNA contour length and a decrease of the bending rigidity. The nature and the critical forces of these transitions depend on DNA base sequence, loading rate, salt conditions and temperature. It has been proposed that the first transition, at forces of 60–80 pN, is a transition from B to S-DNA, viewed as a stretched duplex DNA, while the second one, at stronger forces, is a strand peeling resulting in single-stranded DNAs (ssDNA), similar to thermal denaturation. But due to experimental conditions these two transitions can overlap, for instance for poly(dA-dT). In an attempt to propose a coherent picture compatible with this variety of experimental observations, we derive an analytical formula using a coupled discrete worm-like chain-Ising model. Our model takes into account bending rigidity, discreteness of the chain, linear and non-linear (for ssDNA) bond stretching. In the limit of zero force, this model simplifies into a coupled model already developed by us for studying thermal DNA melting, establishing a connection with previous fitting parameter values for denaturation profiles. Our results are summarized as follows: i) ssDNA is fitted, using an analytical formula, over a nano-Newton range with only three free parameters, the contour length, the bending modulus and the monomer size; ii) a surprisingly good fit on this force range is possible only by choosing a monomer size of 0.2 nm, almost 4 times smaller than the ssDNA nucleobase length; iii) mesoscopic models are not able to fit B to ssDNA (or S to ss) transitions; iv) an analytical formula for fitting B to S transitions is derived in the strong force approximation and for long DNAs, which is in excellent agreement with exact transfer matrix calculations; v) this formula fits perfectly well poly(dG-dC) and λ-DNA force-extension curves with consistent parameter values; vi) a coherent picture, where S to ssDNA transitions are much more sensitive to base-pair sequence than the B to S one, emerges. This relatively simple model might allow one to further study quantitatively the influence of salt concentration and base-pairing interactions on DNA force-induced transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. K.C. Neuman, A. Nagy, Nat. Methods 5, 491 (2008).

    Article  Google Scholar 

  2. M. Rief, H. Clausen-Schaumann, H.E. Gaub, Nat. Struct. Biol. 6, 346 (1999).

    Article  Google Scholar 

  3. B. Maier, U. Seifert, J.O. Rädler, Europhys. Lett. 60, 622 (2002).

    Article  ADS  Google Scholar 

  4. D.A. Schafer, J. Gelles, M.P. Sheetz, R. Landick, Nature 352, 444 (1991).

    Article  ADS  Google Scholar 

  5. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996).

    Article  ADS  Google Scholar 

  6. S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996).

    Article  ADS  Google Scholar 

  7. C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 423 (2003).

    Article  ADS  Google Scholar 

  8. M.T. Woodside, C. Garcia-Garcia, S.M. Block, Curr. Opin. Chem. Biol. 12, 640 (2008).

    Article  Google Scholar 

  9. H. Clausen-Schaumann, M. Rief, C. Tolksdorf, H.E. Gaub, Biophys. J. 78, 1997 (2000).

    Article  Google Scholar 

  10. I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 882 (2001).

    Article  Google Scholar 

  11. J. van Mameren et al., Proc. Natl. Acad. Sci. U.S.A. 106, 18231 (2009).

    Article  ADS  Google Scholar 

  12. M.C. Williams, I. Rouzina, Curr. Opin. Struct. Biol. 12, 330 (2002).

    Article  Google Scholar 

  13. M.C. Williams, I. Rouzina, M. McCauley, Proc. Natl. Acad. Sci. U.S.A. 106, 18047 (2009).

    Article  ADS  Google Scholar 

  14. T.R. Einert, D.B. Staple, H.-J. Kreuzer, R.R. Netz, Biophys. J. 99, 578 (2010).

    Article  ADS  Google Scholar 

  15. K.R. Chaurasiya, T. Paramanathan, M.J. McCauley, M.C. Williams, Phys. Life Rev. 7, 299 (2010).

    Article  ADS  Google Scholar 

  16. C. Prévost, M. Takahashi, R. Lavery, Chem. Phys. Chem. 10, 1399 (2009).

    Article  Google Scholar 

  17. C.H. Albrecht, G. Neuert, R.A. Lugmaier, H.E. Gaub, Biophys. J. 94, 4766 (2008).

    Article  Google Scholar 

  18. H. Fu, H. Chen, J.F. Marko, J. Yan, Nucleic Acids Res. 38, 5594 (2010).

    Article  Google Scholar 

  19. H. Fu, H. Chen, X. Zhang, Y. Qu, J.F. Marko, J. Yan, Nucleic Acids Res. 39, 3473 (2011).

    Article  Google Scholar 

  20. X. Zhang, H. Chen, H. Fu, P.S. Doyle, J. Yan, Proc. Natl. Acad. Sci. U.S.A. 109, 8103 (2012).

    Article  ADS  Google Scholar 

  21. S. Cocco, J. Yan, J.-F. Léger, D. Chatenay, J.F. Marko, Phys. Rev. E 70, 18 (2004).

    Article  Google Scholar 

  22. M.N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, V. Croquette, Phys. Rev. Lett. 89, 248102 (2002).

    Article  ADS  Google Scholar 

  23. L. Livadaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003).

    Article  ADS  Google Scholar 

  24. T. Hügel, M. Rief, M. Seitz, H.E. Gaub, R.R. Netz, Phys. Rev. Lett. 94, 048301 (2005).

    Article  ADS  Google Scholar 

  25. C. Storm, P.C. Nelson, Europhys. Lett. 62, 760 (2003).

    Article  ADS  Google Scholar 

  26. C. Storm, P.C. Nelson, Phys. Rev. E 67, 051906 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Ke, M. Humeniuk, H. S-Gracz, P.E. Marszalek, Phys. Rev. Lett. 99, 018302 (2007).

    Article  ADS  Google Scholar 

  28. G. Mishra, D. Giri, S. Kumar, Phys. Rev. E 79, 031930 (2009).

    Article  ADS  Google Scholar 

  29. P. Cizeau, J.-L. Viovy, Biopolymers 42, 383 (1997).

    Article  Google Scholar 

  30. A. Ahsan, J. Rudnick, R. Bruinsma, Biophys. J. 74, 132 (1998).

    Article  ADS  Google Scholar 

  31. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995).

    Article  ADS  Google Scholar 

  32. A. Hanke, M.G. Ochoa, R. Metzler, Phys. Rev. Lett. 100, 018106 (2008).

    Article  ADS  Google Scholar 

  33. J. Rudnick, T. Kuriabova, Phys. Rev. E 77, 051903 (2008).

    Article  ADS  Google Scholar 

  34. J. Palmeri, M. Manghi, N. Destainville, Phys. Rev. Lett. 99, 088103 (2007).

    Article  ADS  Google Scholar 

  35. J. Palmeri, M. Manghi, N. Destainville, Phys. Rev. E 77, 011913 (2008).

    Article  ADS  Google Scholar 

  36. S.J. Rahi, M.P. Hertzberg, M. Kardar, Phys. Rev. E 78, 05190 (2008).

    Article  Google Scholar 

  37. J. Kierfeld, O. Niamploy, V. Sa-yakanit, R. Lipowsky, Eur. Phys. J. E 14, 17 (2004).

    Article  Google Scholar 

  38. A. Rosa, T.X. Hoang, D. Marenduzzo, A. Maritan, Macromolecules 36, 10095 (2003).

    Article  ADS  Google Scholar 

  39. A. Rosa, T.X. Hoang, D. Marenduzzo, A. Maritan, Biophys. Chem. 115, 251 (2005).

    Article  Google Scholar 

  40. P. Pincus, Macromolecules 9, 386 (1976).

    Article  ADS  Google Scholar 

  41. J.-F. Joanny, Eur. Phys. J. B 9, 117 (1999).

    Article  ADS  Google Scholar 

  42. M. Manghi, R.R. Netz, Eur. Phys. J. E 14, 67 (2004).

    Article  Google Scholar 

  43. R.R. Netz, Macromolecules 34, 7522 (2001).

    Article  ADS  Google Scholar 

  44. P.J. Flory, Statistical Mechanics of Chain Macromolecules (Hanser, Munich, 1989).

  45. M. Fixman, J. Kovac, J. Chem. Phys. 58, 1564 (1973).

    Article  ADS  Google Scholar 

  46. F. Hanke, A. Serr, H.J. Kreuzer, R.R. Netz, EPL 92, 53001 (2010).

    Article  ADS  Google Scholar 

  47. M. Blume, P. Heller, N.A. Lurie, Phys. Rev. B 11, 4483 (1975).

    Article  ADS  Google Scholar 

  48. G.S. Joyce, Phys. Rev. 155, 478 (1967).

    Article  ADS  Google Scholar 

  49. H. Zhang, J.F. Marko, Phys. Rev. E 82, 051906 (2010).

    Article  ADS  Google Scholar 

  50. J. Yan, J.F. Marko, Phys. Rev. Lett. 93, 108108 (2004).

    Article  ADS  Google Scholar 

  51. J. Yan, R. Kawamura, J.F. Marko, Phys. Rev. E 71, 061905 (2005).

    Article  ADS  Google Scholar 

  52. M. Manghi, J. Palmeri, N. Destainville, J. Phys.: Condens. Matter 21, 034104 (2009).

    Article  Google Scholar 

  53. D. Poland, H.R. Scheraga, Theory of helix coil transition in biopolymers (New York, Academic Press, 1970).

  54. R.M. Wartell, A.S. Benight, Phys. Rep. 126, 67 (1985).

    Article  ADS  Google Scholar 

  55. H.S. Koo, D.M. Crothers, Proc. Natl. Acad. Sci. U.S.A. 85, 1763 (1988).

    Article  ADS  Google Scholar 

  56. I. Rouzina, V.A. Bloomfield, Biophys. J. 80, 894 (2001).

    Article  Google Scholar 

  57. O. Gotoh, Adv. Biophys. 16, 1 (1983).

    Article  Google Scholar 

  58. J.-F. Léger, G. Romano, A. Sarkar, J. Robert, L. Bourdieu, D. Chatenay, J.F. Marko, Phys. Rev. Lett. 83, 1066 (1999).

    Article  ADS  Google Scholar 

  59. C.J. Benham, Proc. Natl. Acad. Sci. U.S.A. 76, 3870 (1979).

    Article  ADS  Google Scholar 

  60. J.-H. Jeon, J. Adamcik, G. Dietler, R. Metzler, Phys. Rev. Lett. 105, 208101 (2010).

    Article  ADS  Google Scholar 

  61. S. Whitelam, S. Pronk, P.L. Geissler, Biophys. J. 94, 2452 (2008).

    Article  Google Scholar 

  62. A. Ferrantini, E. Carlon, J. Stat. Mech.: Theor. Exp., P02020 (2009).

  63. A. Dasanna, N. Destainville, J. Palmeri, M. Manghi, EPL 98, 38002 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoel Manghi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manghi, M., Destainville, N. & Palmeri, J. Mesoscopic models for DNA stretching under force: New results and comparison with experiments. Eur. Phys. J. E 35, 110 (2012). https://doi.org/10.1140/epje/i2012-12110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12110-2

Keywords

Navigation