The escape transition of a polymer: A unique case of non-equivalence between statistical ensembles | The European Physical Journal E Skip to main content
Log in

The escape transition of a polymer: A unique case of non-equivalence between statistical ensembles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

A flexible polymer chain under good solvent conditions, end-grafted on a flat repulsive substrate surface and compressed by a piston of circular cross-section with radius L may undergo the so-called “escape transition” when the height of the piston D above the substrate and the chain length N are in a suitable range. In this transition, the chain conformation changes from a quasi-two-dimensional self-avoiding walk of “blobs” of diameter D to an inhomogeneous “flower” state, consisting of a “stem” (stretched string of blobs extending from the grafting site to the piston border) and a “crown” outside of the confining piston. The theory of this transition is developed using a Landau free-energy approach, based on a suitably defined (global) order parameter and taking also effects due to the finite chain length N into account. The parameters of the theory are determined in terms of known properties of limiting cases (unconfined mushroom, chain confined between infinite parallel walls). Due to the non-existence of a local order parameter density, the transition has very unconventional properties (negative compressibility in equilibrium, non-equivalence between statistical ensembles in the thermodynamic limit, etc.). The reasons for this very unusual behavior are discussed in detail. Using Molecular Dynamics (MD) simulation for a simple bead-spring model, with N in the range 50 \( \leq\) N \( \leq\) 300 , a comprehensive study of both static and dynamic properties of the polymer chain was performed. Even though for the considered rather short chains the escape transition is still strongly rounded, the order parameter distribution does reveal the emerging transition clearly. Time autocorrelation functions of the order parameter and first passage times and their distribution indicate clearly the strong slowing down associated with the chain escape. The theory developed here is in good agreement with all these simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vechweber, H. Schindler, D. Drenckhahn, Proc. Natl. Acad. Sci. U.S.A. 97, 4005 (2000).

    Google Scholar 

  2. T. Hugel, M. Grasholz, H. Clausen-Schaumann, A. Pfau, H. Gaub, M. Seitz, Macromolecules 34, 1039 (2001).

  3. T. Hugel, M. Seitz, Macromol. Chem. Rapid. Commun. 22, 989 (2001).

    Google Scholar 

  4. H. Clausen-Schaumann, M. Seitz, R. Krautbauer, H.E. Gaub, Curr. Opin. Chem. Biol. 4, 524 (2001).

    Google Scholar 

  5. M.C. Williams, I. Rouzina, Curr. Opin. Struct. Biol. 12, 330 (2002).

    Google Scholar 

  6. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

  7. G. Subramanian, D.R.M. Williams, P.A. Pincus, Europhys. Lett. 29, 285 (1995)

    Google Scholar 

  8. D.R.M. Williams, F.C. MacKintosh, J. Phys. II 5, 1407 (1995).

    Google Scholar 

  9. M.C. Gufford, D.R.M. Williams, E.M. Sevick, Langmuir 21, 5691 (1997).

  10. J. Jimenez, R. Rajagopalan, Langmuir 14, 2598 (1998).

  11. E.M. Sevick, D.R.M. Williams, Macromolecules 32, 6841 (1999).

  12. A. Milchev, V. Yamakov, K. Binder, Phys. Chem. Chem. Phys. 1, 2083 (1999)

  13. J. Ennis, E.M. Sevick, D.R.M. Williams, Phys. Rev. E 60, 6906 (1999).

    Google Scholar 

  14. J. Ennis, E.M. Sevick, Macromolecules 34, 1908 (2001).

  15. E.M. Sevick, Macromolecules 33, 5743 (2000).

  16. B.M. Steels, F.A.M. Leermakers, C.A. Haynes, J. Chromatogr. B 743, 31 (2000).

    Google Scholar 

  17. F.A.M. Leermakers, A.A. Gorbunov, Macromolecules 35, 8640 (2002).

  18. A.M. Skvortsov, L.I. Klushin, F.A.M. Leermakers, Europhys. Lett. 58, 292 (2002).

    Google Scholar 

  19. L.I. Klushin, A.M. Skvortsov, F.A.M. Leermakers, Phys. Rev. E 69, 061101 (2004).

    Google Scholar 

  20. F.A.M. Leermakers, A.M. Skvortsov, L.I. Klushin, J. Stat. Mech. 10001, 1 (2004).

    Google Scholar 

  21. A.M. Skvortsov, L.I. Klushin, F.A.M. Leermakers, Macromol. Symp. 237, 73 (2006)

    Google Scholar 

  22. M. Daoud, P.G. de Gennes, J. Phys. (Paris) 38, 85 (1977).

    Google Scholar 

  23. H.P. Hsu, K. Binder, L.I. Klushin, A.M. Skvortsov, Phys. Rev. E 76, 021108 (2007).

    Google Scholar 

  24. J. Abbou, A. Anne, K. Demaille, J. Phys. Chem. 110, 22664 (2006).

    Google Scholar 

  25. L.F. Braganza, D.L. Worcester, Biochemistry 25, 7484 (1986).

  26. T.L. Hill, Statistical Mechanics, Principles and Selected Applications (McGraw-Hill Book Co., New York, 1956).

  27. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (John Wiley and Sons, New York-London-Sydney-Toronto, 1975).

  28. G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986).

    Google Scholar 

  29. K. Binder (Editor), Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford University Press, New York, 1995).

  30. M. Kotelyanskii, D.N. Theodoru, Computer Simulation Methods for Polymers (M. Dekker, New York, 2004).

  31. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).

  32. H.P. Hsu, P. Grassberger, J. Chem. Phys. 120, 2034 (2004).

  33. J. des Cloizeaux, G. Jannink, Polymers in Solutions: Their Modeling and Structure (Clarendon, Oxford, 1990).

  34. S. Caracciolo, M.S. Causo, A. Pellissetto, J. Phys. A 32, 1215 (1998).

    Google Scholar 

  35. T. Kreer, S. Metzger, M. Muller, K. Binder, J. Chem. Phys. 120, 4012 (2004).

    Google Scholar 

  36. D.I. Dimitrov, A. Milchev, K. Binder, L.I. Klushin, A.M. Skvortsov, J. Chem. Phys. 128, 234902 (2008).

    Google Scholar 

  37. A. Milchev, K. Binder, Eur. Phys. J. B 3, 477 (1998)

    Google Scholar 

  38. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, London, 1980).

  39. D. Ruelle, Statistical Mechanics: Rigorous Results (Benjamin, New York-Amsterdam, 1969).

  40. M.E. Fisher, The Nature of Critical Points (University of Colorado Press, Colorado, 1965).

  41. K. Binder, Rep. Progr. Phys. 50, 783 (1987).

    Google Scholar 

  42. R.B. Griffiths, C.-Y. Wang, L.S. Langer, Phys. Rev. 149, 301 (1966).

    Google Scholar 

  43. W. Paul, D.W. Heermann, K. Binder, J. Phys. A 22, 3325 (1989).

    Google Scholar 

  44. R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory (John Wiley and Sons, New York, 1987).

  45. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988).

  46. B. Maier, J.O. Radler, Phys. Rev. Lett. 82, 1911 (1999).

  47. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1989).

  48. D.H.E. Gross, Microcanonical Thermodynamics (World Scientific, Singapore, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Milchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitrov, D.I., Klushin, L.I., Skvortsov, A. et al. The escape transition of a polymer: A unique case of non-equivalence between statistical ensembles. Eur. Phys. J. E 29, 9–25 (2009). https://doi.org/10.1140/epje/i2008-10442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10442-0

PACS

Navigation