Stretching of semiflexible polymers with elastic bonds | The European Physical Journal E Skip to main content
Log in

Stretching of semiflexible polymers with elastic bonds

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A semiflexible harmonic chain model with extensible bonds is introduced and applied to the stretching of semiflexible polymers or filaments. The semiflexible harmonic chain model allows to study effects from bending rigidity, bond extension, discrete chain structure, and finite length of a semiflexible polymer in a unified manner. The interplay between bond extension and external force can be described by an effective inextensible chain with increased stretching force, which leads to apparently reduced persistence lengths in force-extension relations. We obtain force-extension relations for strong- and weak-stretching regimes which include the effects of extensible bonds, discrete chain structure, and finite polymer length. We discuss the associated characteristic force scales and calculate the crossover behaviour of the force-extension curves. Strong stretching is governed by the discrete chain structure and the bond extensibility. The linear response for weak stretching depends on the relative size of the contour length and the persistence length which affects the behaviour of very rigid filaments such as F-actin. The results for the force-extension relations are corroborated by transfer matrix and variational calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. O. Kratky, G. Porod, Recl. Trav. Chim. 68, 1106 (1949).

    Google Scholar 

  2. R.A. Harris, J.E. Hearst, J. Chem. Phys. 44, 2595 (1966).

    Google Scholar 

  3. N. Saito, K. Takahashi, Y. Yunoki, J. Phys. Soc. Jpn. 22, 219 (1967).

    Google Scholar 

  4. M. Fixman, J. Kovac, J. Chem. Phys. 58, 1564 (1973).

    Article  Google Scholar 

  5. J. Kovac, C.C. Crabb, Macromolecules 15, 537 (1982).

    Google Scholar 

  6. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599 (1995).

    Google Scholar 

  7. S. Smith, Y. Cui, C. Butamante, Science 271, 795 (1996).

    Google Scholar 

  8. M. Rief, J.M. Fernandez, H.E. Gaub, Phys. Rev. Lett. 81, 4764 (1998).

    Article  Google Scholar 

  9. T. Hugel, M. Grosholz, H. Clausen-Schaumann, A. Pfau, H. Gaub, M. Seitz, Macromolecules 34, 1039 (2001).

    Article  Google Scholar 

  10. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Science 276, 1109 (1997).

    Article  Google Scholar 

  11. X. Liu, G.H. Pollack, Biophys. J. 83, 2705 (2002).

    Google Scholar 

  12. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995).

    Google Scholar 

  13. P. Cluzel, A. Lebrun, R. Lavery, J.-L. Viovy, D. Chatenay, F. Caron, Science 271, 792 (1996).

    Google Scholar 

  14. T. Odijk, Macromolecules 28, 7016 (1995).

    Google Scholar 

  15. M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Biophys. J. 72, 1335 (1997).

    Google Scholar 

  16. C. Bouchiat, M.D. Wang, J.-F. Allemand, T. Strick, M. Block, V. Croquette, Biophys. J. 76, 409 (1999).

    Google Scholar 

  17. R.R. Netz, Macromolecules 34, 7522 (2001).

    Article  Google Scholar 

  18. L. Livadaru, R.R. Netz, H.J. Kreuzer, Macromolecules 36, 3732 (2003).

    Article  Google Scholar 

  19. B. Maier, U. Seifert, J.O. Rädler, Europhys. Lett. 60, 622 (2002).

    Article  Google Scholar 

  20. R.G. Winkler, J. Chem. Phys. 118, 2919 (2003).

    Article  Google Scholar 

  21. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986) p. 316.

  22. B.-Y. Ha, D. Thirumalai, J. Chem. Phys. 106, 4243 (1997).

    Article  Google Scholar 

  23. A. Lamura, T.W. Burkhardt, G. Gompper, Phys. Rev. E 64, 061801 (2001).

    Article  Google Scholar 

  24. K. Kroy, E. Frey, Phys. Rev. Lett. 77, 306 (1996).

    Article  Google Scholar 

  25. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1995) pp. 370 and 590.

  26. Alternatively \(\tilde{L}_{\rm p}=2\kappa/(d-1)T\), which includes the dimension-dependent factor 1/(d−1), is used as definition of the persistence length in the literature. We use the dimension-independent definition \(L_{\rm p} = 2\kappa/T\) in this paper.

  27. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).

  28. A. Ott, M. Magnasco, A. Simon, A. Libchaber, Phys. Rev. E 48, (1993) R1642.

    Google Scholar 

  29. W.H. Taylor, P.J. Hagerman, J. Mol. Biol. 212, 363 (1990).

    Google Scholar 

  30. P. Janmey, J.X. Tang, C.F. Schmidt, Actin filaments in Biophysics Textbook online, http://www.biophysics. org/btol/.

  31. R.P Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1995).

  32. V. Sa-yakanit, C. Kunsombat, O. Niamploy, Path Integral Approach to a Single Polymer Chain with Excluded Volume Effect, in Biological Physics 2000 (World Scientific, Singapore, 2001)

  33. M. Abramowitz, A.I. Stegun, Handbook of Mathematical Functions (Natl. Bur. Stand., Washington, 1965).

  34. E.M. Lifshitz, L.D. Landau, Theory of Elasticity (Pergamon Press, New York, 1986).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kierfeld.

Additional information

PACS:

87.15.-v Biomolecules: structure and physical properties - 87.15.Aa Theory and modeling; computer simulation - 87.15.La Mechanical properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kierfeld, J., Niamploy, O., Sa-yakanit, V. et al. Stretching of semiflexible polymers with elastic bonds. Eur. Phys. J. E 14, 17–34 (2004). https://doi.org/10.1140/epje/i2003-10089-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2003-10089-3

Keywords

Navigation