Radiative characteristics of plant leaf | Atmospheric and Oceanic Optics
Skip to main content

Radiative characteristics of plant leaf

  • Radiation and Biosphere
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Existing leaf radiation models are reviewed. A new concept of the optical model of the leaf as a multiphase system containing three aggregate ensembles of particles significantly different in microphysical and optical characteristics is proposed. The proposed model is based on the reconstruction of the particle size distribution function from the experimental leaf absorption spectrum. Based on the obtained microphysical model of the plant leaf, the spectra of optical radiation reflection and transmission in the range of 400–800 nm are calculated for various relative concentrations of light-absorbing pigments (chlorophyll a, b and carotenes) and various leaf thicknesses. Optical radiation propagation was simulated using the stochastic Monte Carlo method. The simulation results are in good agreement with relevant experimental spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ya. Kondrat’ev, V. V. Kozoderov, and P. P. Fedchenko, Aerospace Studies of Soils and Plant Cover (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  2. M. M. Verstraete, Retrieving Canopy Properties from Remote Sensing Measurements, Imaging Spectrometry — a Tool for Environmental Observation (Springer, Netherlands, 1994), pp. 109–123.

    Google Scholar 

  3. L. Kumar, K. Schmidt, S. Dury, and A. Skidmore, “Imaging Spectrometry and Vegetation Science,” in Imaging Spectrometry, Ed. by F. van de Meer. and S. M. de Jong (Kluwer Academic, Dordrecht, 2001), pp. 111–155.

    Google Scholar 

  4. Z. Chen, J. Ren, P. Gong, and M. Zhang, Monitoring and Management of Agriculture with Remote Sensing, Advances in Land Remote Sensing (Springer, New York, 2008), pp. 397–421.

    Google Scholar 

  5. M. N. Merzlyak, A. A. Gitelson, O. V. Chivkunova, A. E. Solovchenko, and S. I. Pogosyan, “Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigment,” Russian Journal of Plant Physiology 50(5), 704 (2003).

    Article  Google Scholar 

  6. G. A. Blackburn, “Hyperspectral Remote Sensing of Plant Pigments,” J. Exp. Bot. 58(4), 855 (2007).

    Article  Google Scholar 

  7. D. A. Sims and J. A. Gamon, “Relationships between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages,” Remote Sens. Environ. 81, 337 (2002).

    Article  Google Scholar 

  8. P. J. Zarco-Tejada, J. R. Miller, J. Harron, B. Hu, T. L. Noland, N. Goel, G. H. Mohammed, and P. Sampson, “Needle Chlorophyll Content Estimation through Model Inversion Using Hyperspectral Data from Boreal Conifer Forest Canopies,” Remote Sens. Environ. 89, 189 (2004).

    Article  Google Scholar 

  9. P. J. Pinter, J. L. Hatfield, J. S. Schepers, E. M. Barnes, M. S. Moran, C. S. T. Daughtry, and D. R. Upchurch, “Remote Sensing for Crop Management,” Photogrammetric Engineering and Remote Sensing 69(6), 647 (2003).

    Google Scholar 

  10. S. Seager, E. Turner, J. Shafer, and E. Ford, “Vegetation’s Red Edge: A Possible Spectroscopic Biosegnature of Extraterrestrial Plants,” Astrobiology 5(3), 372 (2005).

    Article  ADS  Google Scholar 

  11. N. Yamada and S. Fujimura, “Nondestructive Measurement of Chlorophyll Pigment Content in Plant Leaves from Three-Color Reflectance and Transmittance,” Appl. Opt. 30(27), 3964 (1991).

    Article  ADS  Google Scholar 

  12. A. Mastroberti and J. Mariath, “Leaf Anatomy of Araucaria Angustifolia (Bertol.) Kuntze (Araucariaceae),” Revista Brasil. Bot. 26(3), 34 (2003).

    Google Scholar 

  13. V. V. Berdnik and R. D. Mukhamed’yarov, “Radiation Transport in Plant Leaves,” Opt. Spektrosk. 90(4), 652 (2001) [Opt. Spectrosc.].

    Article  Google Scholar 

  14. Y. M. Govaerts, S. Jacquemoud, M. M. Verstraete, and S. L. Ustin, “Three-Dimensional Radiation Transfer Modeling in a Dicotyledon Leaf,” Appl. Opt. 35(33), 6585 (1996).

    Article  ADS  Google Scholar 

  15. J. R. Ellis and R. M. Leech, “Cell Size and Chloroplast Size in Relation to Chloroplast Replication in Light-Grown Wheat Leaves,” Planta 165, 120 (1985).

    Article  Google Scholar 

  16. M. J. Kasperbauer and J. L. Hamilton, “Chloroplast Structure and Starch Grain Accumulation in Leaves that Received Different Red and Far-Red Levels during Development,” Plant Physiol. 74, 967 (1984).

    Article  Google Scholar 

  17. A. Willstaetter and K. Stoll, Üntersuchungen über die Assimilation der Kohlensäure (Springer, Berlin, 1918), pp. 122–127.

    Google Scholar 

  18. T. R. Sinclair, M. M. Schreiber, and R. M. Hoffer, “Diffuse Reflectance Hypothesis for the Pathway of Solar Radiation through Leaves,” Agronomy J. 65, 276 (1973).

    Article  Google Scholar 

  19. S. L. Ustin, S. Jacquemoud, and Y. M. Govaerts, “Simulation of Photon Transport in a Three-Dimensional Leaf: Implications for Photosynthesis,” Plant Cell Environ. 24, 1095 (2001).

    Article  Google Scholar 

  20. Y. M. Govaerts and M. M. Verstraete, “Raytran: a Monte-Carlo Ray-Tracing Model to Compute Light Scattering in Three-Dimensional Heterogeneous Media,” IEEE Trans. Geosci. Remote Sensing 36(2), 493 (1998).

    Article  ADS  Google Scholar 

  21. G. Baranoski, J. Rokne, and G. Xu, “Virtual Spectrophotometric Measurements for Biologically and Physically-Based Rendering,” The Visual Computer 17(8), 506 (2001).

    Article  Google Scholar 

  22. G. V. G. Baranoski, “Modeling the Interaction of Infrared Radiation (750 to 2500 nm) with Fifacial and Unifacial Plants Leaves,” Remote Sens. Environ. 100, 335 (2006).

    Article  Google Scholar 

  23. W. N. Allen, H. W. Gausman, and A. J. Richardson, “Mean Effective Optical Constant of Cotton Leaves,” J. Opt. Soc. Amer. 60, 542 (1970).

    Article  ADS  Google Scholar 

  24. L. Fukshansky, N. Fukshansky-Kazarinova, and A. M. von Remisovsky, “Estimation of Optical Parameters in a Living Tissue by Solving the Inverse Problem of the Multi-flux Radiative Transfer,” Appl. Opt. 30(22), 3145 (1991).

    Article  ADS  Google Scholar 

  25. S. Jacquemoud and F. Baret, “PROSPECT: a Model of Leaf Optical Properties Spectra,” Remote Sens. Environ. 34, 75 (1990).

    Article  Google Scholar 

  26. S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and V. Hosgood, “Estimating Leaf Biochemistry using the PROSPECT Leaf Optical Properties Model,” Remote Sens. Environ. 56, 194 (1996).

    Article  Google Scholar 

  27. S. Jacquemoud, C. Bacour, H. Poilve, and J.-P. Frangi, “Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance-Direct and Inverse Mode,” Remote Sens. Environ. 74, 471 (2000).

    Article  Google Scholar 

  28. Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, Reflection, and Depolarization of an Optical Wave for a Single Leaf,” IEEE Trans. Geosci. Remote Sensing 28(5), 865 (1990).

    Article  ADS  Google Scholar 

  29. B. D. Ganapol, L. F. Johnson, P. D. Hammer, C. A. Hlavka, and D. L. Peterson, “LEAFMOD: a New Within-Leaf Radiative Transfer Model,” Remote Sens. Environ. 63(2), 182 (1998).

    Article  Google Scholar 

  30. K. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  31. V. V. Berdnik and V. A. Loiko, “Modeling of Radiative Transfer in Disperse Layers of a Medium with a Highly Stretched Phase Function,” J. Quantit. Spectrosc. Radiat. Transfer 61(1), 49 (1999).

    Article  ADS  Google Scholar 

  32. A. K. Dunn, “Modeling of Light Scattering from Inhomogeneous Biological Cells,” in Optics of Biological Particles, Ed. by A. Hoekstra et al. (Springer, Berlin, 2007), pp. 19–29.

    Chapter  Google Scholar 

  33. A. Quirantes and S. Bernard, “Light-Scattering Methods for Modeling Algal Particles as a Collection of Coated and/or Nonspherical Scatterers,” J. Quantit. Spectrosc. Radiat. Transfer. 100, 315 (2006).

    Article  ADS  Google Scholar 

  34. A. Quirantes and S. Bernard, “Light Scattering by Marine Algae: Two-Layer Spherical and Nonspherical Models,” J. Quantit. Spectrosc. Radiat. Transfer. 89, 311 (2004).

    Article  ADS  Google Scholar 

  35. S. Havemann and A. J. Baran, “Calculation of the Phase Matrix Elements of Elongated Hexagonal Ice Columns Using the T-Matrix Method,” J. Quantit. Spectrosc. Radiat. Transfer. 89, 87 (2004).

    Article  ADS  Google Scholar 

  36. E. Baldini, O. Facini, F. Nerozzi, F. Rossi, and A. Rotondi, Leaf Characteristics and Optical Properties of Different Woody Species (Springer, Berlin, 1997), Vol. 12, pp. 73–81.

    Google Scholar 

  37. J. H. Holland, Adaptation in Natural and Artificial System (Univ. Michigan Press, Ann Arbor, 1975).

    Google Scholar 

  38. M. Ye, S. Wang, Y. Lu, Z. Zhu, and Y. Xu, “Inversion of Particle-Size Distribution from Angular Light-Scattering Data with Genetic Algorithms,” Appl. Opt. 38, 2667 (1999).

    ADS  Google Scholar 

  39. M. R. Jones, M. Q. Brewster, and Y. Yamada, “Application of Genetic Algorithm to the Optical Characterization of Propellant Smoke,” J. Thermophys. Heat Transfer 10, 372 (1996).

    Article  Google Scholar 

  40. V. M. Zolotarev, V. N. Morozov, and E. N. Smirnov, Optical Constants of Natural and Technical Media (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  41. G. A. Mikhailov, “On the Problem of Constructing Efficient Algorithms of Random Number Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 6, 1134 (1966) [Comput. Math. Math. Phys.].

    Google Scholar 

  42. K. Razi Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and Scattering of Light by Suspensions of Cells and Subcellular Particles: an Analysis in Terms of Kramers-Kroning Relations,” Photochem. Photobiol. Sci. 3, 132 (2004).

    Article  Google Scholar 

  43. B. Wozniak, S. B. Wozniak, K. Tyszka, and J. Dera, “Modeling the Light Absorption Properties of Particulate Matter Forming Organic Particles Suspended in Seawater. Part 1. Model Description, Classification of Organic Particles, and Example Spectra of the Light Absorption Coefficient and the Imaginary Part of the Refractive Index of Particulate Matter for Phytoplankton Cells and Phytoplankton-Like Particles,” Oceanologia 47(2), 129 (2005).

    Google Scholar 

  44. G. Paillotin, Leibl W., J. Gapinski, J. Breton, and A. Dobek, “Light Gradients in Spherical Photosynthetic Vesicles,” Biophys. J. 75(1), 124 (1998).

    Article  ADS  Google Scholar 

  45. B. R. Lienert, J. N. Porter, and S. K. Sharma, Aerosol Size Distributions from Genetic Inversion of Polar Nephelometer Data, http://www.soest.hawaii.edu/lidar/polar_inversion_13a.htm

  46. G. M. Krekov and A. Ya. Sukhanov, “Application of Artificial Intelligence Methods in Remote Sensing Problems,” in Proceedings of the 15th International Symposium on Atmosphere and Ocean Optics. Atmosphere Physics, Krasnoyarsk, Russia, 2008, p. 100.

  47. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego, 2000).

    Google Scholar 

  48. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002).

    Google Scholar 

  49. G. M. Krekov, M. M. Krekova, and A. Ya. Suhanov, “Estimation of the Efficiency of the Use of Promising White-Light Lidars for Sensing Microphysical Parameters of Layered Cloudiness: 3. Solution of the Inverse Problem,” Opt. Atm. Okeana 22 (2009) (in press) [Atm. Ocean Opt.].

  50. http://www.purchon.com./biology/chloroplasts/

  51. M. S. Twardowski, E. Boss, J. B. Macdonald, and W. S. Pegau, “A Model for Estimating Bulk Refractive Index from the Optical Backscattering Ratio and the Implications for Understanding Particle Composition,” J. Geophys. Res. C 106(7), 14129 (2001).

    Article  ADS  Google Scholar 

  52. D. Risovic, “Two-Component Model of Sea Particle Distribution,” Deep Sea Res. 40(1), 1459 (1993).

    Article  Google Scholar 

  53. V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  54. http://www.giss.nasa.gov./:_crmim

  55. A. Gilat and V. Subramaniam, Numerical Methods with Matlab (Wiley, New York, 2006).

    Google Scholar 

  56. M. M. Krekova, G. M. Krekov, I. V. Samokhvalov, and V. S. Shamanaev, Numerical Evaluation of the Possibilities of Remote Laser Sensing of Fish Schools, Appl. Opt. 33, 5715 (1994).

    Article  ADS  Google Scholar 

  57. G. A. Mikhailov, Some Problems of the Theory of Monte Carlo Methods (Nauka, Novosibirsk, 1974) [in Russian].

    Google Scholar 

  58. G. A. Mikhailov, Optimization of Weight Monte-Carlo Methods (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  59. Monte Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976; Springer, Berlin, 1980).

    Google Scholar 

  60. K. F. Evans and A. Marshak, Numerical Methods, in 3 D Radiative Transfer in Cloudy Atmosphere, Ed. by A. B. Davis and A. Marshak (Springer, Berlin-Heidelberg, 2005), pp. 243–282.

    Chapter  Google Scholar 

  61. G. M. Krekov, V. M. Orlov, and V. V. Belov, Simulation Modeling in Problems of Optical Remote Sensing (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  62. A. Sims Daniel and A. Gamon John, Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages, Remote Sens. Environ. 81, 337 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.M. Krekov, M.M. Krekova, A.A. Lisenko, A.Ya. Sukhanov, 2009, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krekov, G.M., Krekova, M.M., Lisenko, A.A. et al. Radiative characteristics of plant leaf. Atmos Ocean Opt 22, 241–256 (2009). https://doi.org/10.1134/S102485600902016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485600902016X

Keywords