Abstract
Existing leaf radiation models are reviewed. A new concept of the optical model of the leaf as a multiphase system containing three aggregate ensembles of particles significantly different in microphysical and optical characteristics is proposed. The proposed model is based on the reconstruction of the particle size distribution function from the experimental leaf absorption spectrum. Based on the obtained microphysical model of the plant leaf, the spectra of optical radiation reflection and transmission in the range of 400–800 nm are calculated for various relative concentrations of light-absorbing pigments (chlorophyll a, b and carotenes) and various leaf thicknesses. Optical radiation propagation was simulated using the stochastic Monte Carlo method. The simulation results are in good agreement with relevant experimental spectra.
Similar content being viewed by others
References
K. Ya. Kondrat’ev, V. V. Kozoderov, and P. P. Fedchenko, Aerospace Studies of Soils and Plant Cover (Gidrometeoizdat, Leningrad, 1986) [in Russian].
M. M. Verstraete, Retrieving Canopy Properties from Remote Sensing Measurements, Imaging Spectrometry — a Tool for Environmental Observation (Springer, Netherlands, 1994), pp. 109–123.
L. Kumar, K. Schmidt, S. Dury, and A. Skidmore, “Imaging Spectrometry and Vegetation Science,” in Imaging Spectrometry, Ed. by F. van de Meer. and S. M. de Jong (Kluwer Academic, Dordrecht, 2001), pp. 111–155.
Z. Chen, J. Ren, P. Gong, and M. Zhang, Monitoring and Management of Agriculture with Remote Sensing, Advances in Land Remote Sensing (Springer, New York, 2008), pp. 397–421.
M. N. Merzlyak, A. A. Gitelson, O. V. Chivkunova, A. E. Solovchenko, and S. I. Pogosyan, “Application of Reflectance Spectroscopy for Analysis of Higher Plant Pigment,” Russian Journal of Plant Physiology 50(5), 704 (2003).
G. A. Blackburn, “Hyperspectral Remote Sensing of Plant Pigments,” J. Exp. Bot. 58(4), 855 (2007).
D. A. Sims and J. A. Gamon, “Relationships between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages,” Remote Sens. Environ. 81, 337 (2002).
P. J. Zarco-Tejada, J. R. Miller, J. Harron, B. Hu, T. L. Noland, N. Goel, G. H. Mohammed, and P. Sampson, “Needle Chlorophyll Content Estimation through Model Inversion Using Hyperspectral Data from Boreal Conifer Forest Canopies,” Remote Sens. Environ. 89, 189 (2004).
P. J. Pinter, J. L. Hatfield, J. S. Schepers, E. M. Barnes, M. S. Moran, C. S. T. Daughtry, and D. R. Upchurch, “Remote Sensing for Crop Management,” Photogrammetric Engineering and Remote Sensing 69(6), 647 (2003).
S. Seager, E. Turner, J. Shafer, and E. Ford, “Vegetation’s Red Edge: A Possible Spectroscopic Biosegnature of Extraterrestrial Plants,” Astrobiology 5(3), 372 (2005).
N. Yamada and S. Fujimura, “Nondestructive Measurement of Chlorophyll Pigment Content in Plant Leaves from Three-Color Reflectance and Transmittance,” Appl. Opt. 30(27), 3964 (1991).
A. Mastroberti and J. Mariath, “Leaf Anatomy of Araucaria Angustifolia (Bertol.) Kuntze (Araucariaceae),” Revista Brasil. Bot. 26(3), 34 (2003).
V. V. Berdnik and R. D. Mukhamed’yarov, “Radiation Transport in Plant Leaves,” Opt. Spektrosk. 90(4), 652 (2001) [Opt. Spectrosc.].
Y. M. Govaerts, S. Jacquemoud, M. M. Verstraete, and S. L. Ustin, “Three-Dimensional Radiation Transfer Modeling in a Dicotyledon Leaf,” Appl. Opt. 35(33), 6585 (1996).
J. R. Ellis and R. M. Leech, “Cell Size and Chloroplast Size in Relation to Chloroplast Replication in Light-Grown Wheat Leaves,” Planta 165, 120 (1985).
M. J. Kasperbauer and J. L. Hamilton, “Chloroplast Structure and Starch Grain Accumulation in Leaves that Received Different Red and Far-Red Levels during Development,” Plant Physiol. 74, 967 (1984).
A. Willstaetter and K. Stoll, Üntersuchungen über die Assimilation der Kohlensäure (Springer, Berlin, 1918), pp. 122–127.
T. R. Sinclair, M. M. Schreiber, and R. M. Hoffer, “Diffuse Reflectance Hypothesis for the Pathway of Solar Radiation through Leaves,” Agronomy J. 65, 276 (1973).
S. L. Ustin, S. Jacquemoud, and Y. M. Govaerts, “Simulation of Photon Transport in a Three-Dimensional Leaf: Implications for Photosynthesis,” Plant Cell Environ. 24, 1095 (2001).
Y. M. Govaerts and M. M. Verstraete, “Raytran: a Monte-Carlo Ray-Tracing Model to Compute Light Scattering in Three-Dimensional Heterogeneous Media,” IEEE Trans. Geosci. Remote Sensing 36(2), 493 (1998).
G. Baranoski, J. Rokne, and G. Xu, “Virtual Spectrophotometric Measurements for Biologically and Physically-Based Rendering,” The Visual Computer 17(8), 506 (2001).
G. V. G. Baranoski, “Modeling the Interaction of Infrared Radiation (750 to 2500 nm) with Fifacial and Unifacial Plants Leaves,” Remote Sens. Environ. 100, 335 (2006).
W. N. Allen, H. W. Gausman, and A. J. Richardson, “Mean Effective Optical Constant of Cotton Leaves,” J. Opt. Soc. Amer. 60, 542 (1970).
L. Fukshansky, N. Fukshansky-Kazarinova, and A. M. von Remisovsky, “Estimation of Optical Parameters in a Living Tissue by Solving the Inverse Problem of the Multi-flux Radiative Transfer,” Appl. Opt. 30(22), 3145 (1991).
S. Jacquemoud and F. Baret, “PROSPECT: a Model of Leaf Optical Properties Spectra,” Remote Sens. Environ. 34, 75 (1990).
S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and V. Hosgood, “Estimating Leaf Biochemistry using the PROSPECT Leaf Optical Properties Model,” Remote Sens. Environ. 56, 194 (1996).
S. Jacquemoud, C. Bacour, H. Poilve, and J.-P. Frangi, “Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance-Direct and Inverse Mode,” Remote Sens. Environ. 74, 471 (2000).
Q. Ma, A. Ishimaru, P. Phu, and Y. Kuga, “Transmission, Reflection, and Depolarization of an Optical Wave for a Single Leaf,” IEEE Trans. Geosci. Remote Sensing 28(5), 865 (1990).
B. D. Ganapol, L. F. Johnson, P. D. Hammer, C. A. Hlavka, and D. L. Peterson, “LEAFMOD: a New Within-Leaf Radiative Transfer Model,” Remote Sens. Environ. 63(2), 182 (1998).
K. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
V. V. Berdnik and V. A. Loiko, “Modeling of Radiative Transfer in Disperse Layers of a Medium with a Highly Stretched Phase Function,” J. Quantit. Spectrosc. Radiat. Transfer 61(1), 49 (1999).
A. K. Dunn, “Modeling of Light Scattering from Inhomogeneous Biological Cells,” in Optics of Biological Particles, Ed. by A. Hoekstra et al. (Springer, Berlin, 2007), pp. 19–29.
A. Quirantes and S. Bernard, “Light-Scattering Methods for Modeling Algal Particles as a Collection of Coated and/or Nonspherical Scatterers,” J. Quantit. Spectrosc. Radiat. Transfer. 100, 315 (2006).
A. Quirantes and S. Bernard, “Light Scattering by Marine Algae: Two-Layer Spherical and Nonspherical Models,” J. Quantit. Spectrosc. Radiat. Transfer. 89, 311 (2004).
S. Havemann and A. J. Baran, “Calculation of the Phase Matrix Elements of Elongated Hexagonal Ice Columns Using the T-Matrix Method,” J. Quantit. Spectrosc. Radiat. Transfer. 89, 87 (2004).
E. Baldini, O. Facini, F. Nerozzi, F. Rossi, and A. Rotondi, Leaf Characteristics and Optical Properties of Different Woody Species (Springer, Berlin, 1997), Vol. 12, pp. 73–81.
J. H. Holland, Adaptation in Natural and Artificial System (Univ. Michigan Press, Ann Arbor, 1975).
M. Ye, S. Wang, Y. Lu, Z. Zhu, and Y. Xu, “Inversion of Particle-Size Distribution from Angular Light-Scattering Data with Genetic Algorithms,” Appl. Opt. 38, 2667 (1999).
M. R. Jones, M. Q. Brewster, and Y. Yamada, “Application of Genetic Algorithm to the Optical Characterization of Propellant Smoke,” J. Thermophys. Heat Transfer 10, 372 (1996).
V. M. Zolotarev, V. N. Morozov, and E. N. Smirnov, Optical Constants of Natural and Technical Media (Gidrometeoizdat, Leningrad, 1984) [in Russian].
G. A. Mikhailov, “On the Problem of Constructing Efficient Algorithms of Random Number Simulation,” Zh. Vychisl. Mat. Mat. Fiz. 6, 1134 (1966) [Comput. Math. Math. Phys.].
K. Razi Naqvi, M. N. Merzlyak, and T. B. Melo, “Absorption and Scattering of Light by Suspensions of Cells and Subcellular Particles: an Analysis in Terms of Kramers-Kroning Relations,” Photochem. Photobiol. Sci. 3, 132 (2004).
B. Wozniak, S. B. Wozniak, K. Tyszka, and J. Dera, “Modeling the Light Absorption Properties of Particulate Matter Forming Organic Particles Suspended in Seawater. Part 1. Model Description, Classification of Organic Particles, and Example Spectra of the Light Absorption Coefficient and the Imaginary Part of the Refractive Index of Particulate Matter for Phytoplankton Cells and Phytoplankton-Like Particles,” Oceanologia 47(2), 129 (2005).
G. Paillotin, Leibl W., J. Gapinski, J. Breton, and A. Dobek, “Light Gradients in Spherical Photosynthetic Vesicles,” Biophys. J. 75(1), 124 (1998).
B. R. Lienert, J. N. Porter, and S. K. Sharma, Aerosol Size Distributions from Genetic Inversion of Polar Nephelometer Data, http://www.soest.hawaii.edu/lidar/polar_inversion_13a.htm
G. M. Krekov and A. Ya. Sukhanov, “Application of Artificial Intelligence Methods in Remote Sensing Problems,” in Proceedings of the 15th International Symposium on Atmosphere and Ocean Optics. Atmosphere Physics, Krasnoyarsk, Russia, 2008, p. 100.
M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic Press, San Diego, 2000).
M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (University Press, Cambridge, 2002).
G. M. Krekov, M. M. Krekova, and A. Ya. Suhanov, “Estimation of the Efficiency of the Use of Promising White-Light Lidars for Sensing Microphysical Parameters of Layered Cloudiness: 3. Solution of the Inverse Problem,” Opt. Atm. Okeana 22 (2009) (in press) [Atm. Ocean Opt.].
M. S. Twardowski, E. Boss, J. B. Macdonald, and W. S. Pegau, “A Model for Estimating Bulk Refractive Index from the Optical Backscattering Ratio and the Implications for Understanding Particle Composition,” J. Geophys. Res. C 106(7), 14129 (2001).
D. Risovic, “Two-Component Model of Sea Particle Distribution,” Deep Sea Res. 40(1), 1459 (1993).
V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].
A. Gilat and V. Subramaniam, Numerical Methods with Matlab (Wiley, New York, 2006).
M. M. Krekova, G. M. Krekov, I. V. Samokhvalov, and V. S. Shamanaev, Numerical Evaluation of the Possibilities of Remote Laser Sensing of Fish Schools, Appl. Opt. 33, 5715 (1994).
G. A. Mikhailov, Some Problems of the Theory of Monte Carlo Methods (Nauka, Novosibirsk, 1974) [in Russian].
G. A. Mikhailov, Optimization of Weight Monte-Carlo Methods (Nauka, Moscow, 1987) [in Russian].
Monte Carlo Method in Atmospheric Optics, Ed. by G. I. Marchuk (Nauka, Novosibirsk, 1976; Springer, Berlin, 1980).
K. F. Evans and A. Marshak, Numerical Methods, in 3 D Radiative Transfer in Cloudy Atmosphere, Ed. by A. B. Davis and A. Marshak (Springer, Berlin-Heidelberg, 2005), pp. 243–282.
G. M. Krekov, V. M. Orlov, and V. V. Belov, Simulation Modeling in Problems of Optical Remote Sensing (Nauka, Novosibirsk, 1988) [in Russian].
A. Sims Daniel and A. Gamon John, Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages, Remote Sens. Environ. 81, 337 (2002).
Author information
Authors and Affiliations
Additional information
Original Russian Text © G.M. Krekov, M.M. Krekova, A.A. Lisenko, A.Ya. Sukhanov, 2009, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Krekov, G.M., Krekova, M.M., Lisenko, A.A. et al. Radiative characteristics of plant leaf. Atmos Ocean Opt 22, 241–256 (2009). https://doi.org/10.1134/S102485600902016X
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S102485600902016X