Binarization of the Swallow Swarm Optimization for Feature Selection | Programming and Computer Software Skip to main content
Log in

Binarization of the Swallow Swarm Optimization for Feature Selection

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

In this paper, we propose six methods for binarization of the swallow swarm optimization (SSO) algorithm to solve the feature selection problem. The relevance of the selected feature subsets is estimated by two classifiers: a fuzzy rule-based classifier and a classifier based on k-nearest neighbors. To find an optimal subset of features, we take into account the number of features and classification accuracy. The developed algorithms are tested on datasets from the KEEL repository. For the statistical evaluation of the binarization methods, we use Friedman’s two-way analysis of variance by ranks for related samples. The best feature selection result is shown by a hybrid method based on modified algebraic operations and MERGE operation introduced by the authors of this paper. The best classification accuracy is achieved with a V-shaped transfer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Bolon-Canedo, V., Sanchez-Marono, N., and Alonso-Betanzos, A., Feature Selection for High-Dimensional Data, Springer, 2015.

    Book  Google Scholar 

  2. Qi, Z., Wang, H., He, T., Li, J., and Gao, H., Friend: Feature selection on inconsistent data, Neurocomput., 2020, vol. 391, pp. 52–64.

    Article  Google Scholar 

  3. Sha, Z.-C., Liul, Z.-M., Ma, C., and Chen, J., Feature selection for multi-label classification by maximizing full-dimensional conditional mutual information, Appl. Intell., 2021, vol. 51, pp. 326–340.

    Article  Google Scholar 

  4. Luke, S., Essentials of metaheuristics. https://cs.gmu.edu/~sean/book/metaheuristics

  5. Boussaid, I., Lepagnot, J., and Siarry, P., A survey on optimization metaheuristics, Inf. Sci., 2013, vol. 237, pp. 82–117.

    Article  MathSciNet  MATH  Google Scholar 

  6. Garcia, J., Crawford, B., Soto, R., and Astorga, G., A clustering algorithm applied to the binarization of swarm intelligence continuous metaheuristics, Swarm Evol. Comput., 2019, vol. 44, pp. 646–664.

    Article  Google Scholar 

  7. Poli, R., Kennedy, J., and Blackwell, T., Particle swarm optimization, Swarm Intell., 2007, vol. 1, pp. 33–57.

    Article  Google Scholar 

  8. Neshat, M., Sepidnam, G., and Sargolzaei, M., Swallow swarm optimization algorithm: A new method to optimization, Neural Comput. Appl., 2013, vol. 23, pp. 429–454.

    Article  Google Scholar 

  9. Bouzidi, S., Riffi, M.E., Bouzidi, M., and Moucouf, M., The discrete swallow swarm optimization for flow-shop scheduling problem, Adv. Intell. Syst. Comput., 2019, vol. 915, pp. 228–236.

    Google Scholar 

  10. Bouzidi, S. and Riffi, M.E., Discrete swallow swarm optimization algorithm for travelling salesman problem, Proc. Int. Conf. Smart Digital Environment, 2017, pp. 80–84.

  11. Hodashinsky, I., Sarin, K., Shelupanov, A., and Slezkin, A., Feature selection based on swallow swarm optimization for fuzzy classification, Symmetry, 2019, vol. 11, no. 11, p. 1423.

    Article  Google Scholar 

  12. Cover, T. and Hart, P., Nearest neighbor pattern classification, IEEE Trans. Inf. Theory, 1967, vol. 13, pp. 21–27.

    Article  MATH  Google Scholar 

  13. Roh, S.-Be., Pedrycz, W., and Ahn, T.-C., A design of granular fuzzy classifier, Expert Syst. Appl., 2014, vol. 41, pp. 6786–6795.

    Article  Google Scholar 

  14. Mekh, M.A. and Hodashinsky, I.A., Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 2017, vol. 56, pp. 616–626.

    MATH  Google Scholar 

  15. Evsukoff, A.G., Galichet, S., de Lima, B.S.L.P., and Ebecken, N.F.F., Design of interpretable fuzzy rule-based classifiers using spectral analysis with structure and parameters optimization, Fuzzy Sets Syst., 2009, vol. 160, pp. 857–881.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hodashinsky, I.A. and Gorbunov, I.V., Algorithms of the tradeoff between accuracy and complexity in the design of fuzzy approximators, Optoelectron., Instrum., Data Process., 2013, vol. 49, pp. 569–577.

    Article  Google Scholar 

  17. Jiang, D., Peng, C., Fan, Z., and Chen, Y., Modified binary differential evolution for solving wind farm layout optimization problems, Proc. IEEE Symp. Computational Intelligence for Engineering Solutions (CIES), 2013, pp. 23–28.

  18. Costa, M.F.P., Rocha, A.M.A.C., Francisco, R.B., and Fernandes, E.M.G.P., Heuristic-based firefly algorithm for bound constrained nonlinear binary optimization, Adv. Oper. Res., 2014.

  19. Crawford, B. et al., Putting continuous metaheuristics to work in binary search spaces, Complexity, 2017.

  20. Wang, L., Wang, X., Zhen, F.J., and Zhen, L., A novel probability binary particle swarm optimization algorithm and its application, J. Software, 2008, vol. 3, no. 9, pp. 28–35.

    Article  Google Scholar 

  21. Kennedy, J. and Eberhart, R., A discrete binary version of the particle swarm algorithm, Proc. IEEE Int. Conf. Computational Cybernetics and Simulation, 1997, pp. 4104–4108.

  22. Dahi, Z.A.E.M., Mezioud, C., and Draa, A., Binary bat algorithm: On the efficiency of mapping functions when handling binary problems using continuous-variable-based metaheuristics, IFIP Adv. Inf. Commun. Technol., Springer, 2015, vol. 456, pp. 3–14.

    Google Scholar 

  23. Rashedi, E., Nezamabadi-pour, H., and Saryazdi, S., BGSA: Binary gravitational search algorithm, Nat. Comput., 2009, vol. 9, no. 3, pp. 727–745.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mirhosseini, M. and Nezamabadi-pour, H., BICA: A binary imperialist competitive algorithm and its application in CBIR systems, Int. J. Mach. Learn. Cybern., 2018, vol. 9, pp. 2043–2057.

    Article  Google Scholar 

  25. Emary, E., Zawbaa, H.M., and Hassanien, A.E., Binary grey wolf optimization approaches for feature selection, Neurocomput., 2016, vol. 172, pp. 371–381.

    Article  Google Scholar 

  26. Qasim, O.S. and Algamal, Z.Y., Feature selection using different transfer functions for binary bat algorithm, Int. J. Math., Eng. Manage. Sci., 2020, vol. 5, no. 4, pp. 697–706.

    Google Scholar 

  27. Sayed, G.I., Tharwat, A., and Hassanien, A.E., Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection, Appl. Intell., 2019, vol. 49, pp. 188–205.

    Article  Google Scholar 

  28. Too, J. and Mirjalili, S., A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study, Knowl.-Based Syst., 2021, vol. 212, p. 106553.

    Article  Google Scholar 

  29. Arora, S. and Anand, P., Binary butterfly optimization approaches for feature selection, Expert Syst. Appl., 2019, vol. 116, pp. 147–160.

    Article  Google Scholar 

  30. Zhang, X., et al., Gaussian mutational chaotic fruit fly-built optimization and feature selection, Expert Syst. Appl., 2020, vol. 141, p. 112976.

    Article  Google Scholar 

  31. Ji, B., et al., Bio-inspired feature selection: An improved binary particle swarm optimization approach, IEEE Access, 2020, vol. 8, pp. 85989–86002.

    Article  Google Scholar 

  32. Mirjalili, S. and Lewis, A., S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput., 2013, vol. 9, pp. 1–14.

    Article  Google Scholar 

  33. Bardamova, M., Konev, A., Hodashinsky, I., and Shelupanov, A., A fuzzy classifier with feature selection based on the gravitational search algorithm, Symmetry, 2018, vol. 10, no. 11, p. 609.

    Article  Google Scholar 

  34. Dahi, Z.A.E.M., Mezioud, C., and Draa, A., On the efficiency of the binary flower pollination algorithm: Application on the antenna positioning problem, Appl. Soft Comput., 2016, vol. 47, pp. 395–414.

    Article  Google Scholar 

  35. Yavuz, G. and Aydin, D., Angle modulated artificial bee colony algorithms for feature selection, Appl. Comput. Intell. Soft Comput., 2016.

  36. Pampara, G., Franken, N., and Engelbrecht, A., Combining particle swarm optimization with angle modulation to solve binary problems, Proc. IEEE Congr. Evolutionary Computation (CEC), Piscataway, New Jersey, 2005, vol. 1, pp. 89–96.

  37. Pampara, G., Engelbrecht, A.P., and Franken, N., Binary differential evolution, Proc. IEEE Congr. Evolutionary Computation (CEC), 2006, pp. 1873–1879.

  38. Yuan, X., Nie, H., Su, A., Wang, L., and Yuan, Y., An improved binary particle swarm optimization for unit commitment problem, Expert Syst. Appl., 2009, vol. 36, pp. 8049–8055.

    Article  Google Scholar 

  39. Siqueira, H., Figueiredo, E., Macedo, M., Santana, C.J., Bastos-Filho, C.J., and Gokhale, A.A., Boolean binary cat swarm optimization algorithm, Proc. IEEE Latin American Conf. Computational Intelligence (LA-CCI), 2018, pp. 1–6.

  40. Kiran, M.S. and Gunduz, M., XOR-based artificial bee colony algorithm for binary optimization, Turk. J. Electr. Eng. Comput. Sci., 2013, vol. 21, pp. 2307–2328.

    Article  Google Scholar 

  41. Salgotra, R. and Rattan, M., A novel binary spider monkey optimization algorithm for thinning of concentric circular antenna arrays, IETE J. Res., 2016, vol. 62, pp. 736–744.

    Article  Google Scholar 

  42. Hodashinsky, I.A., Nemirovich-Danchenko, M.M., and Samsonov, S.S., Feature selection for fuzzy classifier using the spider monkey algorithm, Bus. Inf., 2019, vol. 13, no. 2, pp. 29–42.

    Article  Google Scholar 

  43. Srikanth, K. et al., Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem, Comput. Electr. Eng., 2018, vol. 70, pp. 243–260.

    Article  Google Scholar 

  44. Manju, A. and Nigam, M.J., Applications of quantum inspired computational intelligence: A survey, Artif. Intell. Rev., 2014, vol. 42, pp. 79–156.

    Article  Google Scholar 

  45. Hamed, H.N.A., Kasabov, N.K., and Shamsuddin, S.M., Quantum inspired particle swarm optimization for feature selection and parameter optimization in evolving spiking neural networks for classification tasks, Evol. Algorithms, 2011, pp. 133–148.

  46. Zouache, D. and Abdelaziz, F.B., A cooperative swarm intelligence algorithm based on quantum-inspired and rough sets for feature selection, Comput. Ind. Eng., 2018, vol. 115, pp. 26–36.

    Article  Google Scholar 

  47. Han, K.-H. and Kim, J.-H., Quantum-inspired evolutionary algorithms with a new termination criterion, Hε gate, and two-phase scheme, IEEE Trans. Evol. Comput., 2004, vol. 8, pp. 164–171.

    Article  Google Scholar 

  48. Nezamabadi-pour, H., A quantum-inspired gravitational search algorithm for binary encoded optimization problems, Eng. Appl. Artif. Intell., 2015, vol. 40, pp. 62–75.

    Article  Google Scholar 

  49. Hodashinsky, I.A. and Mekh, M.A., Fuzzy classifier design using harmonic search methods, Program. Comput. Software, 2017, vol. 43, pp. 37–46.

    Article  MathSciNet  Google Scholar 

  50. Source code and instructions. https://gitlab.com/core_developers/fuzzy_core/-/tree /master/experiments/binarization_methods

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. FEWM-2020-0042.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Slezkin, I. A. Hodashinsky or A. A. Shelupanov.

Additional information

Translated by Yu. Kornienko

APPENDIX

APPENDIX

Table A1. Accuracy values for the fuzzy classifier
Table A2. Number of selected features for the fuzzy classifier
Table A3. Accuracy values for the 5NN classifier
Table A4. Number of selected features for the 5NN classifier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezkin, A.O., Hodashinsky, I.A. & Shelupanov, A.A. Binarization of the Swallow Swarm Optimization for Feature Selection. Program Comput Soft 47, 374–388 (2021). https://doi.org/10.1134/S0361768821050066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768821050066

Navigation