Visualization of Large Scenes with Deterministic Dynamics | Programming and Computer Software
Skip to main content

Visualization of Large Scenes with Deterministic Dynamics

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Visualization of large dynamic scenes is a challenging computer graphics problem. There are many approaches to solving this problem: frustum culling, occlusion culling, geometry simplification, and rendering optimization. One of the effective methods is the levels of detail (LOD) for scene objects. For large scenes, the hierarchical LOD (HLOD), whereby the levels of detail are created for large groups of objects, has proven efficient. However, this method faces certain difficulties when processing dynamic scenes. In this paper, we propose a method for visualizing scenes with deterministic dynamics that is based on hierarchical dynamic levels of detail (HDLOD). We also describe methods for generating HDLOD clusters and their visualization. Results of computational experiments conducted confirm high efficiency and practical potential of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

REFERENCES

  1. Luebke, D. et al., Level of Detail for 3D Graphics, San Francisco: Morgan Kaufmann, 2003.

    Google Scholar 

  2. Garland, M. and Heckbert, P.S., Surface simplification using quadric error metrics, Proc. 24th Annu. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH), 1997, pp. 209–216.

  3. Erikson, C. et al., HLODs for faster display of large static and dynamic environments, Proc. Symp. Interactive 3D Graphics (I3D), 2001, pp. 111–120.

  4. Lilley, S. and Cozzi, P., Cesium 3D tiles: Beyond 2D tiling, 2016. https://cesium.com/presentations/files/FOSS4GNA2016/3DTiles.pdf.

  5. Toledo, L. et al., Hierarchical level of detail for varied animated crowds, Visual Comput., 2014, vol. 30, nos. 6–8, pp. 949–961.

    Article  Google Scholar 

  6. Cohen-Or, D., Chrysanthou, Y.L., Silva, C.T., and Durand, F., A survey of visibility for walkthrough applications, IEEE Trans. Visualization Comput. Graphics, 2003, vol. 9, no. 3, pp. 412–431.

    Article  Google Scholar 

  7. Bittner, J. et al., Coherent hierarchical culling: Hardware occlusion queries made useful, Comput. Graphics Forum, 2004, vol. 23, no. 3, pp. 615–624.

    Article  Google Scholar 

  8. Guthe, M. et al., Near optimal hierarchical culling: Performance driven use of hardware occlusion queries, Proc. Eurographics Symp. Rendering, 2006, pp. 207–214.

  9. Mattausch, O. et al., CHC++: Coherent hierarchical culling revisited, Comput. Graphics Forum, 2008, vol. 27, pp. 221–230.

    Article  Google Scholar 

  10. Xu, D. and Tian, Y., A comprehensive survey of clustering algorithms, Ann. Data Sci., 2015, vol. 2, pp. 165–193.

    Article  Google Scholar 

  11. Samet, H., Foundations of Multidimensional and Metric Data Structures, San Francisco: Morgan Kaufmann, 2006.

    MATH  Google Scholar 

  12. Morozov, S. et al., Indexing of hierarchically organized spatial-temporal data using dynamic regular octrees, Lect. Notes Comput. Sci., 2018, vol. 10742, pp. 276–290.

    Article  Google Scholar 

  13. Lorach, T., OpenGL NVIDIA command-list: Approaching zero driver overhead, 2014. https://on-demand.gputechconf.com/siggraph/2015/presentation/SIG1512-Tristan-Lorach.pdf.

  14. Bennett, J. and Carter, M., Performance gains achieved through modern OpenGL in the Siemens DirectModel rendering engine, 2015. http://on-demand.gputechconf.com/gtc/2015/presentation/S5387-Jeremy-Bennett.pdf.

  15. Gonakhchyan, V., Efficient command buffer recording for accelerated rendering of large 3D scenes, Proc. 12th Int. Conf. Computer Graphics, Visualization, Computer Vision, and Image Processing, 2018, pp. 397–402.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Semenov, V. N. Shutkin, V. A. Zolotov, S. V. Morozov or V. I. Gonakhchyan.

Additional information

Translated by Yu. Kornienko

Appendices

PSEUDOCODE OF THE HDLOD VISUALIZATION ALGORITHM

PROCEDURE DISPLAY_CLUSTER(CLUSTER n, VIEW v, TIME t, RESOLUTION r)

{

                     IF (VALUE_OF(BEHAVIOR_FUNCTION(n), t) EQUAL 0)

                                    RETURN

                     ELSEIF (IS_OUTSIDE_FRUSTUM(BOUNDING_BOX(n), v))

                                    RETURN

                     ELSE IF (VALUE_OF(DELTA_FUNCTION(n), t) / DISTANCE(n, v) < r)

                     {

                                    IF (VALUE_OF(BEHAVIOR_FUNCTION(n), t) >= 0.5)

                                                   RENDER(GEOMETRY(n), v))

                                    ELSE

                                                   RETURN

                     }

                     ELSE

                     {

                                    SET_OF_CLUSTER children = CHILDREN_NODES(n)

                                    FOR_EACH (CLUSTER child IN children)

                                                   DISPLAY_CLUSTER(child, v, t, r)

                     }

}

PSEUDOCODE OF THE ALGORITHM FOR CLUSTERING PSEUDO-DYNAMIC OBJECTS

PROCEDURE GENERATE_HDLOD(SCENE scene, INTEGER levels, HDLOD tree)

{

                     SET_OF_CLUSTER active = NULL, next = NULL

                     FOR_EACH (OBJECT object IN OBJECTS(scene))

                     {

                                         CLUSTER cluster = FORM_CLUSTER(object)

                                         ADD_TO(cluster, tree)

                                         ADD_TO(cluster, active)

                     }

                     FOR_EACH (INTEGER step = 1 TO levels)

                     {

                                         REAL epsilon, gamma, w

                                         COMPUTE_LEVEL_THRESHOLDS(scene, levels, step, epsilon, gamma, w)

                                         WHILE (NOT_EMPTY(active))

                                         {

                                                          CLUSTER representative = SELECT_REPRESENTATIVE(active)

                                                          SET_OF_CLUSTER neighbors = FIND_NEIGHBORS(active,

                                                                            representative, gamma, w)

                                                          IF (IS_EMPTY(neighbors))

                                                          {

                                                               ADD_TO(representative, next)

                                                              REMOVE_FROM(representative, active)

                                                          }

                                                          ELSE

                                                          {

                                                               SET_OF_CLUSTER children

                                                               ADD_TO(representative, children)

                                                               FOR_EACH(CLUSTER neighbor IN neighbors)

                                                                    ADD_TO(neighbor, children)

                                                               CLUSTER cluster = CREATE_CLUSTER(children)

                                                               SIMPLIFY (cluster, epsilon)

                                                               ADD_TO(cluster, tree)

                                                               ADD_TO(cluster, next)

                                                               REMOVE_FROM(representative, active)

                                                               FOR_EACH (CLUSTER neighbor IN neighbors)

                                                                                   REMOVE_FROM(neighbor, active)

                                                          }

                                          COPY(next, active)

                                          EMPTY(next)

                     }

}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semenov, V.A., Shutkin, V.N., Zolotov, V.A. et al. Visualization of Large Scenes with Deterministic Dynamics. Program Comput Soft 46, 223–232 (2020). https://doi.org/10.1134/S036176882003007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S036176882003007X