Performance analysis of concurrent systems in algebra dtsiPBC | Programming and Computer Software
Skip to main content

Performance analysis of concurrent systems in algebra dtsiPBC

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Petri box calculus PBC is a well-known algebra of concurrent processes with a Petri net semantics. In the paper, an extension of PBC with discrete stochastic time and immediate multiactions, which is referred to as discrete time stochastic and immediate PBC (dtsiPBC), is considered. Performance analysis methods for concurrent and distributed systems with random time delays are investigated in the framework of the new stochastic process algebra. It is demonstrated that the performance evaluation is possible not only via the underlying semi-Markov chains of the dtsiPBC expressions but also with the use of the underlying discrete time Markov chains, and the latter analysis technique is more optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hermanns, H. and Rettelbach, M., Syntax, semantics, equivalences and axioms for MTIPP, Proc. of the 2nd Workshop on Process Algebras and Performance Modelling (PAPM’94), Regensberg, 1994, pp. 71–88.

    Google Scholar 

  2. Hillston, J., A Compositional Approach to Performance Modelling, Cambridge (UK): Cambridge Univ. Press, UK, 1996.

    Book  Google Scholar 

  3. Bernardo, M. and Gorrieri, R., A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time, Theor. Comput. Sci., 1998, vol. 202, pp. 1–54.

    Article  MathSciNet  MATH  Google Scholar 

  4. Best, E., Devillers, R., and Hall, J.G., The box calculus: a new causal algebra with multi-label communication, Lect. Notes Comp. Sci., 1992, vol. 609. pp. 21–69.

    Article  MathSciNet  Google Scholar 

  5. Best, E. and Koutny, M., A refined view of the box algebra, Lect. Notes Comp. Sci., 1995, vol. 935, pp. 1–20.

    Article  MathSciNet  Google Scholar 

  6. Best, E., Devillers, R., and Koutny, M., Petri Net Algebra, EATCS Monographs on Theoretical Comp. Sci., Springer, 2001.

    Book  Google Scholar 

  7. Milner, R.A.J., Communication and Concurrency, Upper Saddle River, NJ: Prentice-Hall, 1989.

    MATH  Google Scholar 

  8. Macià, H., Valero, V., and de Frutos, D., sPBC: a Markovian extension of finite Petri box calculus, Proc. of the 9th IEEE Int. Workshop on Petri Nets and Performance Models (PNPM’01), Aachen: IEEE Comput. Society, 2001. pp. 207–216.

    Chapter  Google Scholar 

  9. Macià, H., Valero, V., Cazorla, D., and Cuartero, F., Introducing the iteration in sPBC, Lect. Notes Comp. Sci., 2004, vol. 3235, pp. 292–308.

    Article  Google Scholar 

  10. Macià, H., Valero, V., Cuartero, F., and Ruiz, M.C., sPBC: a Markovian extension of Petri box calculus with immediate multiactions, Fundamenta Informaticae, 2008, vol. 87, nos. 3–4, pp. 367–406.

    MathSciNet  MATH  Google Scholar 

  11. Tarasyuk, I.V., Discrete time stochastic Petri box calculus. Oldenburg, Germany, 2005 (Berichte aus dem Department für Informatik. Carl von Ossietzky Univ. Oldenburg. no. 3/05).

    Google Scholar 

  12. Tarasyuk, I.V., Stochastic Petri box calculus with discrete time, Fundamenta Informaticae, 2007, vol. 76, nos. 1–2, pp. 189–218.

    MathSciNet  MATH  Google Scholar 

  13. Tarasyuk, I.V., Iteration in discrete time stochastic Petri box calculus, Bulletin of the Novosibirsk Computing Center, Series Comp. Sci., IIS Special Issue, 2006, vol. 24, pp. 129–148.

    MATH  Google Scholar 

  14. Tarasyuk, I.V., Macià, H., and Valero, V., Discrete time stochastic Petri box calculus with immediate multi-actions, Technical Report, Department of Computer Systems, High School of Information Engineering, Univ. of Castilla-La Mancha. no. DIAB-10-03-1.

  15. Tarasyuk, I.V., Macià, H., Valero, V., Discrete time stochastic Petri box calculus with immediate multiactions dtsiPBC, in Electronic Notes in Theoretical Computer Science, Elsevier, 2013, vol. 296, pp. 229–252.

    Article  Google Scholar 

  16. Molloy, M.K., Discrete time stochastic Petri nets, IEEE Trans. Software Eng., 1985, vol. 11, no. 4. pp. 417–423.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ross, S.M., Stochastic Processes, New York: Wiley, 1996.

    MATH  Google Scholar 

  18. Bernardo, M. and Bravetti, M., Reward based congruences: can we aggregate more?, Lect. Notes Comp. Sci., 2001, vol. 2165, pp. 136–151.

    Article  MathSciNet  Google Scholar 

  19. Balbo, G., Introduction to generalized stochastic Petri nets, Lect. Notes Comp. Sci., 2007, vol. 4486. pp. 83–131.

    Article  Google Scholar 

  20. van Glabbeek, R.J., Smolka, S.A., and Steffen, B., Reactive, generative, and stratified models of probabilistic processes, Information Computation, 1995, vol. 121, no. 1, pp. 59–80.

    Article  MATH  Google Scholar 

  21. Zimmermann, A., Freiheit, J., and Hommel, G., Discrete time stochastic Petri nets for modeling and evaluation of real-time systems, Proc. of the 9th Int. Workshop on Parallel and Distributed Real Time Systems (WPDRTS’01), San Francisco, 2001, pp. 282–286.

    Google Scholar 

  22. Zijal, R., Ciardo, G., and Hommel, G., Discrete deterministic and stochastic Petri nets, Proc. of the 9th ITG/GI Professional Meeting “Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen”(MMB’97), VDE-Verlag, Berlin, 1997, pp. 103–117.

    Google Scholar 

  23. Buchholz P. and Tarasyuk, I.V., Net and algebraic approaches to probabilistic modeling, Joint Novosibirsk Computing Center and Institute of Informatics Systems Bulletin, Series Comp. Sci., Novosibirsk, 2001, vol. 15, pp. 31–64.

    MATH  Google Scholar 

  24. Haverkort, B.R., Markovian models for performance and dependability evaluation, Lect. Notes Comp. Sci., 2001, vol. 2090, pp. 38–83.

    Article  Google Scholar 

  25. van Glabbeek, R.J., The linear time — branching time spectrum II: the semantics of sequential systems with silent moves (extended abstract), Lect. Notes Comp. Sci., 1993, vol. 715, pp. 66–81.

    Article  Google Scholar 

  26. Mudge, T.N. and Al-Sadoun, H.B., A semi-Markov model for the performance of multiple-bus systems, IEEE Trans. Computers, 1985, vol. C-34, no. 10, pp. 934–942.

    Article  Google Scholar 

  27. Katoen, J.-P., Quantitative and qualitative extensions of event structures, Ph. D. Thesis, Enschede, The Netherlands, 1996, (CTIT Ph. D.-thesis series. Centre for Telematics and Information Technology, University of Twente, no. 96-09).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Tarasyuk.

Additional information

Original Russian Text © I.V. Tarasyuk, H. Macià, V. Valero, 2014, published in Programmirovanie, 2014, Vol. 40, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasyuk, I.V., Macià, H. & Valero, V. Performance analysis of concurrent systems in algebra dtsiPBC. Program Comput Soft 40, 229–249 (2014). https://doi.org/10.1134/S0361768814050089

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768814050089

Keywords