Abstract
A new class of exact solutions has been obtained for three-dimensional equations of themal diffusion in a viscous incompressible liquid. This class enables the description of the temperature and concentration distribution at the boundaries of a liquid layer by a quadratic law. It has been shown that the solutions of the linearized set of thermal diffusion equations can describe the motion of a liquid at extreme points of hydrodynamic fields. A generalization of the classic Couette flow with a quadratic temperature and concentration distribution at the lower boundary has been considered as an example. The application of the presented class of solutions enables the modeling of liquid counterflows and the construction of exact solutions describing the flows of dissipative media.
Similar content being viewed by others
References
Polyanin, A.D., Kutepov, A.M., Vyaz’min, A.V., and Kazenin, D.A., Khimicheskaya gidrodinamika (Chemical Fluid Dynamics), Moscow: Byuro Kvantum, 1996.
Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Boca Raton, Fla.: CRC, Taylor and Francis Group, 2002.
Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodinamika (Fluid Mechanics), Moscow: Fizmatlit, 2006, 5th ed.
Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya ustoichivost' neszhimaemoi zhidkosti (Convective Stability of Incompressible Fluids), Moscow: Nauka, 1972.
Bertozzi, A.L. and Majda, A.J., Vorticity and Incompressible Flows, Cambridge: Cambridge Univ. Press, 2002.
Ladyzhenskaya, O.A., Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness, Russ. Math. Surv., 2003, vol. 58, no. 2, pp. 251–286.
Neményi, P.F., Recent developments in inverse and semi-inverse methods in the mechanics of continua, Adv. Appl. Mech., 1951, vol. 2, pp. 123–151.
Andreev, V.K. and Bekezhanova, V.B., Stability of nonisothermal fluids (Review), J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 2, pp. 171–184.
Ryzhkov, I.I., Termodiffuziya v smesyakh: Uravneniya, simmetrii, resheniya i ikh ustoichivost' (Thermal Diffusion in Mixtures: Equations, Symmetries, and Solutions and Their Stability), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2013.
Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Advective Eddy Flows in a Rotating Liquid Layer), Perm: Perm. Gos. Univ., 2006.
Aristov, S.N. and Shvarts, K.G., Vikhrevye Techeniya v tonkikh sloyakh zhidkosti (Eddy Flows in Thin Liquid Layers), Kirov: Vyat. Gos. Univ., 2011.
Skul’skii, O.I. and Aristov, S.N., Mekhanika anomal’no vyazkikh zhidkostei (Mechanics of Anomalously Viscous Fluids), Moscow: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2003.
Shafranov, V.D., On equilibrium magnetohydrodynamic configurations, Terzo Congr. int. sui fenomeni dionizzazione nei gas, Milano, 1957, p. 990.
Grad, H. and Rubin, H., Hydromagnetic equilibria and force-free fields, Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, New York, 1959, p. 190.
Aristov, S.N. and Polyanin, A.D., New classes of exact solutions of Euler equations, Dokl. Phys., 2008, vol. 53, no. 3, pp. 166–171.
Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662.
Polyanin, A.D. and Aristov, S.N., A new method for constructing exact solutions to three-dimensional Navier–Stokes and Euler equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 885–890.
Broman, G.I. and Rudenko, O.V., Submerged Landau jet: exact solutions, their meaning and application, Phys. Usp., 2010, vol. 53, no. 1, pp. 91–98.
Drazin, P.G. and Riley, N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge Univ. Press, 2006.
Pukhnachev, V.V., Symmetries in Navier–Stokes equations, Usp. Mekh., 2006, vol. 4, no. 1, pp. 6–76.
Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical symmetry reductions of the two-dimensional incompressible Navier–Stokes equations, Stud. Appl. Math., 1999, vol. 103, p. 183–240.
Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical symmetry reductions of the three-dimensional incompressible Navier–Stokes equations, J. Phys. A: Math. Gen., 1998, vol. 31, pp. 7965–7980.
Meleshko, S.V. and Pukhnachev, V.V., One class of partially invariant solutions of the Navier–Stokes equations, J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 2, 208–216.
Meleshko, S.V., A particular class of partially invariant solutions of the Navier–Stokes equations, Nonlinear Dyn., 2004, vol. 36, no. 1, pp. 47–68.
Goriely, A., Integrability and Nonintegrability of Dynamical systems, Singapore: World Scientific, 2001.
Couette, M., Études sur le frottement des liquids, Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.
Poiseuille, J., Récherches experimentelles sur le mouvement des liquides dans les tubes de très petits diamèters, Comptes Rendus, 1840, vol. 11, pp. 961–967.
Stokes, G.G., On the effect of the internal friction of fluid on the motion of pendulums, Trans. Cambridge Philos. Soc., 1851, vol. 9, pp. 1–86.
Hiemenz, K., Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., 1911, vol. 326, pp. 321–410.
von Karman, T., Uber laminare und turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, pp. 233–252.
Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under Conditions of the Internal Problem) Moscow: Gostekhteorizdat, 1952.
Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech. Phys., 1966, vol. 7, pp. 43–47.
Lin, C.C., Note on a class of exact solutions in magneto-hydrodynamics, Arch. Ration. Mech. Anal., 1958, vol. 1, no. 1, pp. 391–395.
Aristov, S.N. and Prosviryakov, E.Yu., On layered flows of planar free convection, Nelin. Din., 2013, vol. 9, no. 4, pp. 651–657.
Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol.48, no.3, pp. 330–335.
Aristov, S.N. and Prosviryakov, E.Yu., On one class of analytic solutions for steady-state axisymmetric Bénard–Marangoni convection in a viscous incompressible liquid, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3, pp. 110–118.
Betyaev, S.K., Asimptoticheskie metody klassicheskoi dinamiki zhidkosti (Asymptotic Methods of Classical Fluid Dynamics), Moscow: Inst. Komp’yuternykh Issledovanii, 2014.
Onsager, L., Reciprocal relations in irreversible processes, Phys. Rev., 1931, vol. 38, no. 12, pp. 2265–2279.
Polyanin, A.D. and Zaitsev, V.F., Equations of an unsteady state laminar boundary layer: general transformations and exact solutions, Theor. Found. Chem. Technol., 2001, vol. 35, no. 6, p. 563–539.
Aristov, S.N. and Prosviryakov, E.Yu., Inhomogeneous Couette flow, Nelin. Din., 2014, vol. 10, no. 2, pp. 177–182.
Aristov, S.N. and Prosviryakov, E.Yu., Stokes waves in eddy fluid, Nelin. Din., 2014, vol. 10, no. 3, p. 309–318.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © S.N. Aristov, E.Yu. Prosviryakov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 3, pp. 294–301.
Rights and permissions
About this article
Cite this article
Aristov, S.N., Prosviryakov, E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor Found Chem Eng 50, 286–293 (2016). https://doi.org/10.1134/S0040579516030027
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040579516030027