A new class of exact solutions for three-dimensional thermal diffusion equations | Theoretical Foundations of Chemical Engineering
Skip to main content

A new class of exact solutions for three-dimensional thermal diffusion equations

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

A new class of exact solutions has been obtained for three-dimensional equations of themal diffusion in a viscous incompressible liquid. This class enables the description of the temperature and concentration distribution at the boundaries of a liquid layer by a quadratic law. It has been shown that the solutions of the linearized set of thermal diffusion equations can describe the motion of a liquid at extreme points of hydrodynamic fields. A generalization of the classic Couette flow with a quadratic temperature and concentration distribution at the lower boundary has been considered as an example. The application of the presented class of solutions enables the modeling of liquid counterflows and the construction of exact solutions describing the flows of dissipative media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polyanin, A.D., Kutepov, A.M., Vyaz’min, A.V., and Kazenin, D.A., Khimicheskaya gidrodinamika (Chemical Fluid Dynamics), Moscow: Byuro Kvantum, 1996.

    Google Scholar 

  2. Polyanin, A.D., Kutepov, A.M., Vyazmin, A.V., and Kazenin, D.A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Boca Raton, Fla.: CRC, Taylor and Francis Group, 2002.

    Google Scholar 

  3. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodinamika (Fluid Mechanics), Moscow: Fizmatlit, 2006, 5th ed.

    Google Scholar 

  4. Gershuni, G.Z. and Zhukhovitskii, E.M., Konvektivnaya ustoichivost' neszhimaemoi zhidkosti (Convective Stability of Incompressible Fluids), Moscow: Nauka, 1972.

    Google Scholar 

  5. Bertozzi, A.L. and Majda, A.J., Vorticity and Incompressible Flows, Cambridge: Cambridge Univ. Press, 2002.

    Google Scholar 

  6. Ladyzhenskaya, O.A., Sixth problem of the millennium: Navier–Stokes equations, existence and smoothness, Russ. Math. Surv., 2003, vol. 58, no. 2, pp. 251–286.

    Article  Google Scholar 

  7. Neményi, P.F., Recent developments in inverse and semi-inverse methods in the mechanics of continua, Adv. Appl. Mech., 1951, vol. 2, pp. 123–151.

    Article  Google Scholar 

  8. Andreev, V.K. and Bekezhanova, V.B., Stability of nonisothermal fluids (Review), J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 2, pp. 171–184.

    Article  Google Scholar 

  9. Ryzhkov, I.I., Termodiffuziya v smesyakh: Uravneniya, simmetrii, resheniya i ikh ustoichivost' (Thermal Diffusion in Mixtures: Equations, Symmetries, and Solutions and Their Stability), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2013.

    Google Scholar 

  10. Aristov, S.N. and Shvarts, K.G., Vikhrevye techeniya advektivnoi prirody vo vrashchayushchemsya sloe zhidkosti (Advective Eddy Flows in a Rotating Liquid Layer), Perm: Perm. Gos. Univ., 2006.

    Google Scholar 

  11. Aristov, S.N. and Shvarts, K.G., Vikhrevye Techeniya v tonkikh sloyakh zhidkosti (Eddy Flows in Thin Liquid Layers), Kirov: Vyat. Gos. Univ., 2011.

    Google Scholar 

  12. Skul’skii, O.I. and Aristov, S.N., Mekhanika anomal’no vyazkikh zhidkostei (Mechanics of Anomalously Viscous Fluids), Moscow: NITs “Regulyarnaya i Khaoticheskaya Dinamika,” 2003.

    Google Scholar 

  13. Shafranov, V.D., On equilibrium magnetohydrodynamic configurations, Terzo Congr. int. sui fenomeni dionizzazione nei gas, Milano, 1957, p. 990.

    Google Scholar 

  14. Grad, H. and Rubin, H., Hydromagnetic equilibria and force-free fields, Proc. 2nd United Nations Int. Conf. on the Peaceful Uses of Atomic Energy, New York, 1959, p. 190.

    Google Scholar 

  15. Aristov, S.N. and Polyanin, A.D., New classes of exact solutions of Euler equations, Dokl. Phys., 2008, vol. 53, no. 3, pp. 166–171.

    Article  CAS  Google Scholar 

  16. Aristov, S.N., Knyazev, D.V., and Polyanin, A.D., Exact solutions of the Navier–Stokes equations with the linear dependence of velocity components on two space variables, Theor. Found. Chem. Eng., 2009, vol. 43, no. 5, pp. 642–662.

    Article  CAS  Google Scholar 

  17. Polyanin, A.D. and Aristov, S.N., A new method for constructing exact solutions to three-dimensional Navier–Stokes and Euler equations, Theor. Found. Chem. Eng., 2011, vol. 45, no. 6, pp. 885–890.

    Article  CAS  Google Scholar 

  18. Broman, G.I. and Rudenko, O.V., Submerged Landau jet: exact solutions, their meaning and application, Phys. Usp., 2010, vol. 53, no. 1, pp. 91–98.

    Article  CAS  Google Scholar 

  19. Drazin, P.G. and Riley, N., The Navier–Stokes Equations: A Classification of Flows and Exact Solutions, Cambridge: Cambridge Univ. Press, 2006.

    Book  Google Scholar 

  20. Pukhnachev, V.V., Symmetries in Navier–Stokes equations, Usp. Mekh., 2006, vol. 4, no. 1, pp. 6–76.

    Google Scholar 

  21. Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical symmetry reductions of the two-dimensional incompressible Navier–Stokes equations, Stud. Appl. Math., 1999, vol. 103, p. 183–240.

    Article  Google Scholar 

  22. Ludlow, D.K., Clarkson, P.A., and Bassom, A.P., Nonclassical symmetry reductions of the three-dimensional incompressible Navier–Stokes equations, J. Phys. A: Math. Gen., 1998, vol. 31, pp. 7965–7980.

    Article  Google Scholar 

  23. Meleshko, S.V. and Pukhnachev, V.V., One class of partially invariant solutions of the Navier–Stokes equations, J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 2, 208–216.

    Article  CAS  Google Scholar 

  24. Meleshko, S.V., A particular class of partially invariant solutions of the Navier–Stokes equations, Nonlinear Dyn., 2004, vol. 36, no. 1, pp. 47–68.

    Article  Google Scholar 

  25. Goriely, A., Integrability and Nonintegrability of Dynamical systems, Singapore: World Scientific, 2001.

    Google Scholar 

  26. Couette, M., Études sur le frottement des liquids, Ann. Chim. Phys., 1890, vol. 21, pp. 433–510.

    Google Scholar 

  27. Poiseuille, J., Récherches experimentelles sur le mouvement des liquides dans les tubes de très petits diamèters, Comptes Rendus, 1840, vol. 11, pp. 961–967.

    Google Scholar 

  28. Stokes, G.G., On the effect of the internal friction of fluid on the motion of pendulums, Trans. Cambridge Philos. Soc., 1851, vol. 9, pp. 1–86.

    Google Scholar 

  29. Hiemenz, K., Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., 1911, vol. 326, pp. 321–410.

    Google Scholar 

  30. von Karman, T., Uber laminare und turbulente Reibung, Z. Angew. Math. Mech., 1921, vol. 1, pp. 233–252.

    Article  Google Scholar 

  31. Ostroumov, G.A., Svobodnaya konvektsiya v usloviyakh vnutrennei zadachi (Free Convection under Conditions of the Internal Problem) Moscow: Gostekhteorizdat, 1952.

    Google Scholar 

  32. Birikh, R.V., Thermocapillary convection in a horizontal layer of liquid, J. Appl. Mech. Tech. Phys., 1966, vol. 7, pp. 43–47.

    Article  Google Scholar 

  33. Lin, C.C., Note on a class of exact solutions in magneto-hydrodynamics, Arch. Ration. Mech. Anal., 1958, vol. 1, no. 1, pp. 391–395.

    Article  Google Scholar 

  34. Aristov, S.N. and Prosviryakov, E.Yu., On layered flows of planar free convection, Nelin. Din., 2013, vol. 9, no. 4, pp. 651–657.

    Article  Google Scholar 

  35. Aristov, S.N. and Shvarts, K.G., Convective heat transfer in a locally heated plane incompressible fluid layer, Fluid Dyn., 2013, vol.48, no.3, pp. 330–335.

    Article  CAS  Google Scholar 

  36. Aristov, S.N. and Prosviryakov, E.Yu., On one class of analytic solutions for steady-state axisymmetric Bénard–Marangoni convection in a viscous incompressible liquid, Vestn. Samar. Gos. Tekh. Univ., Ser. Fiz.-Mat. Nauki, 2013, no. 3, pp. 110–118.

    Article  Google Scholar 

  37. Betyaev, S.K., Asimptoticheskie metody klassicheskoi dinamiki zhidkosti (Asymptotic Methods of Classical Fluid Dynamics), Moscow: Inst. Komp’yuternykh Issledovanii, 2014.

    Google Scholar 

  38. Onsager, L., Reciprocal relations in irreversible processes, Phys. Rev., 1931, vol. 38, no. 12, pp. 2265–2279.

    Article  CAS  Google Scholar 

  39. Polyanin, A.D. and Zaitsev, V.F., Equations of an unsteady state laminar boundary layer: general transformations and exact solutions, Theor. Found. Chem. Technol., 2001, vol. 35, no. 6, p. 563–539.

    Article  Google Scholar 

  40. Aristov, S.N. and Prosviryakov, E.Yu., Inhomogeneous Couette flow, Nelin. Din., 2014, vol. 10, no. 2, pp. 177–182.

    Article  Google Scholar 

  41. Aristov, S.N. and Prosviryakov, E.Yu., Stokes waves in eddy fluid, Nelin. Din., 2014, vol. 10, no. 3, p. 309–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Prosviryakov.

Additional information

Original Russian Text © S.N. Aristov, E.Yu. Prosviryakov, 2016, published in Teoreticheskie Osnovy Khimicheskoi Tekhnologii, 2016, Vol. 50, No. 3, pp. 294–301.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristov, S.N., Prosviryakov, E.Y. A new class of exact solutions for three-dimensional thermal diffusion equations. Theor Found Chem Eng 50, 286–293 (2016). https://doi.org/10.1134/S0040579516030027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579516030027

Keywords