Abstract
We find principal parts of asymptotic mean-square errors of semirecursive nonparametric estimators of functionals of a multidimensional density function under the assumption that observations satisfy a strong mixing condition. Results are illustrated by an example of a nonlinear autoregression process.
Similar content being viewed by others
References
Härdle, W. and Tsybakov, A., Local Polynomial Estimators of the Volatility Function in Nonparametric Autoregression, J. Econometrics, 1997, vol. 81, no. 1, pp. 223–242.
Härdle, W., Tsybakov, A., and Yang, L., Nonparametric Vector Autoregression, J. Statist. Plann. Inference, 1998, vol. 68, no. 2, pp. 221–245.
Chen, G., Choi, Y.K., and Zhou, Y., Nonparametric Estimation of Structural Change Points in Volatility Models for Time Series, J. Econometrics, 2005, vol. 126, no. 1, pp. 79–114.
Raibman, N.S., Chto takoe identifikatsiya? (What Is Identification?), Moscow: Nauka, 1970.
Eykhoff, P., System Identification: Parameter and State Estimation, London: Wiley, 1974. Translated under the title Osnovy identifikatsii sistem upravleniya. Otsenivanie parametrov i sostoyaniya, Moscow: Mir, 1975.
Pashchenko, F.F., Response Function and Its Application in Optimal Model Choice, in Sistemy upravleniya (Control Systems), Moscow: Nauka, 1973, pp. 72–78.
Kitaeva, A.V., Koshkin, G.M., and Piven, I.G., Nonparametric Identification in Economic Systems, Obozr. Prikl. Prom. Mat., 2008, vol. 15, no. 4, pp. 588–612.
Kitaeva, A.V. and Koshkin, G.M., Recurrent Nonparametric Estimation of Functions from Functionals of Multidimensional Density and Their Derivatives, Autom. Remote Control, 2009, no. 3, pp. 389–407 [Avtomat. i Telemekh. (Engl. Transl.), 2009, no. 3, pp. 48–67].
Wolverton, C.T. and Wagner, T.J., Asymptotically Optimal Discriminant Functions for Pattern Classification, IEEE Trans. Inform. Theory, 1969, vol. 15, no. 2, pp. 258–265.
Banon, G., Sur un estimateur non paramétrique de la densité de probabilité, Rev. Statist. Appl., 1976, vol. 24, no. 4, pp. 61–73.
Nadaraya, E.A., On Estimation of Regression, Teor. Veroyatnost. i Primenen., 1964, vol. 9, no. 1, pp. 157–159.
Watson, G.S., Smooth Regression Analysis, Sankhyā, Ser. A, 1964, vol. 26, pp. 359–372.
Ahmad, J.A. and Lin, P.E., Nonparametric Sequential Estimation of a Multiple Regression Function, Bull. Math. Statist., 1976, vol. 17, no. 1–2, pp. 63–75.
Buldakov, V.M. and Koshkin, G.M., On Recursive Estimates of Probability Density and Regression Line, Probl. Peredachi Inf., 1977, vol. 13, no. 1, pp. 58–66 [Probl. Inf. Trans. (Engl. Transl.), 1977, vol. 13, no. 1, pp. 41–48].
Devroye, L.P. and Wagner, T.J., On the L 1 Convergence of Kernel Estimator of Regression Functions with Applications in Discrimination, Z. Wahrsch. Verw. Gebiete, 1980, vol. 51, no. 1, pp. 15–25.
Krzyźak, A. and Pawlak, M., Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification, IEEE Trans. Inform. Theory, 1984, vol. 30, no. 1, pp. 91–93.
Greblicki, W. and Pawlak, M., Necessary and Sufficient Consistency Conditions for a Recursive Kernel Regression Estimate, J. Multivariate Anal., 1987, vol. 23, no. 1, pp. 67–76.
Krzyźak, A., Global Convergence of the Recursive Kernel Estimates with Applications in Classification and Nonlinear System Estimation, IEEE Trans. Inform. Theory, 1992, vol. 38, no. 4, pp. 1323–1338.
Walk, H., Strong Universal Pointwise Consistency of Recursive Kernel Regression Estimates, Ann. Inst. Statist. Math., 2001, vol. 53, no. 4, pp. 691–707.
Koshkin, G.M., Deviation Moments of the Substitution Estimator and of Its Piecewise-Smooth Approximations, Sibirsk. Mat. Zh., 1999, vol. 40, no. 3, pp. 605–618 [Siberian Math. J. (Engl. Transl.), 1999, vol. 40, no. 3, pp. 515–527].
Bosq, D. and Cheze-Payaud, N., Optimal Asymptotic Quadratic Error of Nonparametric Regression Function Estimates for a Continuous-Time Process from Sampled-Data, Statistics, 1999, vol. 32, no. 3, pp. 229–247.
Fikhtengol’ts, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya (A Course in Differential and Integral Calculus), Moscow: Nauka, 1966, vol. 2.
Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Moscow: Nauka, 1971, 5th ed. Translated under the title Table of Integrals, Series, and Products, New York: Academic, 1980.
Masry, E. and Tjøstheim, D., Nonparametric Estimation and Identification of Nonlinear ARCH Time Series, Econometric Theory, 1995, vol. 11, no. 2, pp. 258–289.
Bhattacharya, R.N. and Lee, C., Ergodicity of Nonlinear First Order Autoregressive Models, J. Theoret. Probab., 1995, vol. 8, no. 1, pp. 207–219.
Lu, Z.D., On the Geometric Ergodicity of a Non-linear Autoregressive Model with an Autoregressive Conditional Heteroscedastic Term, Statist. Sinica, 1998, vol. 8, no. 4, pp. 1205–1217.
Chen, M. and Chen, G., Geometric Ergodicity of Nonlinear Autoregressive Models with Changing Conditional Variances, Canad. J. Statist., 2000, vol. 28, no. 3, pp. 605–613.
Tjøstheim, D. and Auestad, B.H., Nonparametric Identification of Nonlinear Time Series: Projections, J. Amer. Statist. Association, 1994, vol. 89, no. 428, pp. 1398–1409.
Collomb, G., Estimation non paramétrique de la régression par la méthode du noyau, Thèse, Univ. Paul Sabatier, Toulouse, 1976.
Davydov, Yu.A., The Convergence of Distributions Which Are Generated by Stationary Random Processes, Teor. Veroyatnost. i Primenen., 1968, vol. 13, no. 4, pp. 730–737.
Billingsley, P., Convergence of Probability Measures, New York: Wiley, 1968. Translated under the title Skhodimost’ veroyatnostnykh mer, Moscow: Nauka, 1977.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © A.V. Kitaeva, G.M. Koshkin, 2010, published in Problemy Peredachi Informatsii, 2010, Vol. 46, No. 1, pp. 25–41.
Supported in part by the Russian Foundation for Basic Research, project no. 09-08-00595a.
Rights and permissions
About this article
Cite this article
Kitaeva, A.V., Koshkin, G.M. Nonparametric semirecursive identification in a wide sense of strong mixing processes. Probl Inf Transm 46, 22–37 (2010). https://doi.org/10.1134/S0032946010010047
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0032946010010047