Nonparametric semirecursive identification in a wide sense of strong mixing processes | Problems of Information Transmission Skip to main content
Log in

Nonparametric semirecursive identification in a wide sense of strong mixing processes

  • Methods of Signal Processing
  • Published:
Problems of Information Transmission Aims and scope Submit manuscript

Abstract

We find principal parts of asymptotic mean-square errors of semirecursive nonparametric estimators of functionals of a multidimensional density function under the assumption that observations satisfy a strong mixing condition. Results are illustrated by an example of a nonlinear autoregression process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Härdle, W. and Tsybakov, A., Local Polynomial Estimators of the Volatility Function in Nonparametric Autoregression, J. Econometrics, 1997, vol. 81, no. 1, pp. 223–242.

    Article  MATH  MathSciNet  Google Scholar 

  2. Härdle, W., Tsybakov, A., and Yang, L., Nonparametric Vector Autoregression, J. Statist. Plann. Inference, 1998, vol. 68, no. 2, pp. 221–245.

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, G., Choi, Y.K., and Zhou, Y., Nonparametric Estimation of Structural Change Points in Volatility Models for Time Series, J. Econometrics, 2005, vol. 126, no. 1, pp. 79–114.

    Article  MathSciNet  Google Scholar 

  4. Raibman, N.S., Chto takoe identifikatsiya? (What Is Identification?), Moscow: Nauka, 1970.

    Google Scholar 

  5. Eykhoff, P., System Identification: Parameter and State Estimation, London: Wiley, 1974. Translated under the title Osnovy identifikatsii sistem upravleniya. Otsenivanie parametrov i sostoyaniya, Moscow: Mir, 1975.

    Google Scholar 

  6. Pashchenko, F.F., Response Function and Its Application in Optimal Model Choice, in Sistemy upravleniya (Control Systems), Moscow: Nauka, 1973, pp. 72–78.

    Google Scholar 

  7. Kitaeva, A.V., Koshkin, G.M., and Piven, I.G., Nonparametric Identification in Economic Systems, Obozr. Prikl. Prom. Mat., 2008, vol. 15, no. 4, pp. 588–612.

    MATH  Google Scholar 

  8. Kitaeva, A.V. and Koshkin, G.M., Recurrent Nonparametric Estimation of Functions from Functionals of Multidimensional Density and Their Derivatives, Autom. Remote Control, 2009, no. 3, pp. 389–407 [Avtomat. i Telemekh. (Engl. Transl.), 2009, no. 3, pp. 48–67].

  9. Wolverton, C.T. and Wagner, T.J., Asymptotically Optimal Discriminant Functions for Pattern Classification, IEEE Trans. Inform. Theory, 1969, vol. 15, no. 2, pp. 258–265.

    Article  MATH  MathSciNet  Google Scholar 

  10. Banon, G., Sur un estimateur non paramétrique de la densité de probabilité, Rev. Statist. Appl., 1976, vol. 24, no. 4, pp. 61–73.

    MathSciNet  Google Scholar 

  11. Nadaraya, E.A., On Estimation of Regression, Teor. Veroyatnost. i Primenen., 1964, vol. 9, no. 1, pp. 157–159.

    MATH  Google Scholar 

  12. Watson, G.S., Smooth Regression Analysis, Sankhyā, Ser. A, 1964, vol. 26, pp. 359–372.

    MATH  Google Scholar 

  13. Ahmad, J.A. and Lin, P.E., Nonparametric Sequential Estimation of a Multiple Regression Function, Bull. Math. Statist., 1976, vol. 17, no. 1–2, pp. 63–75.

    MATH  MathSciNet  Google Scholar 

  14. Buldakov, V.M. and Koshkin, G.M., On Recursive Estimates of Probability Density and Regression Line, Probl. Peredachi Inf., 1977, vol. 13, no. 1, pp. 58–66 [Probl. Inf. Trans. (Engl. Transl.), 1977, vol. 13, no. 1, pp. 41–48].

    MATH  Google Scholar 

  15. Devroye, L.P. and Wagner, T.J., On the L 1 Convergence of Kernel Estimator of Regression Functions with Applications in Discrimination, Z. Wahrsch. Verw. Gebiete, 1980, vol. 51, no. 1, pp. 15–25.

    Article  MATH  MathSciNet  Google Scholar 

  16. Krzyźak, A. and Pawlak, M., Almost Everywhere Convergence of a Recursive Regression Function Estimate and Classification, IEEE Trans. Inform. Theory, 1984, vol. 30, no. 1, pp. 91–93.

    Article  MATH  Google Scholar 

  17. Greblicki, W. and Pawlak, M., Necessary and Sufficient Consistency Conditions for a Recursive Kernel Regression Estimate, J. Multivariate Anal., 1987, vol. 23, no. 1, pp. 67–76.

    Article  MATH  MathSciNet  Google Scholar 

  18. Krzyźak, A., Global Convergence of the Recursive Kernel Estimates with Applications in Classification and Nonlinear System Estimation, IEEE Trans. Inform. Theory, 1992, vol. 38, no. 4, pp. 1323–1338.

    Article  MATH  MathSciNet  Google Scholar 

  19. Walk, H., Strong Universal Pointwise Consistency of Recursive Kernel Regression Estimates, Ann. Inst. Statist. Math., 2001, vol. 53, no. 4, pp. 691–707.

    Article  MATH  MathSciNet  Google Scholar 

  20. Koshkin, G.M., Deviation Moments of the Substitution Estimator and of Its Piecewise-Smooth Approximations, Sibirsk. Mat. Zh., 1999, vol. 40, no. 3, pp. 605–618 [Siberian Math. J. (Engl. Transl.), 1999, vol. 40, no. 3, pp. 515–527].

    MathSciNet  Google Scholar 

  21. Bosq, D. and Cheze-Payaud, N., Optimal Asymptotic Quadratic Error of Nonparametric Regression Function Estimates for a Continuous-Time Process from Sampled-Data, Statistics, 1999, vol. 32, no. 3, pp. 229–247.

    Article  MATH  MathSciNet  Google Scholar 

  22. Fikhtengol’ts, G.M., Kurs differentsial’nogo i integral’nogo ischisleniya (A Course in Differential and Integral Calculus), Moscow: Nauka, 1966, vol. 2.

    Google Scholar 

  23. Gradshtein, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Moscow: Nauka, 1971, 5th ed. Translated under the title Table of Integrals, Series, and Products, New York: Academic, 1980.

    Google Scholar 

  24. Masry, E. and Tjøstheim, D., Nonparametric Estimation and Identification of Nonlinear ARCH Time Series, Econometric Theory, 1995, vol. 11, no. 2, pp. 258–289.

    Article  MathSciNet  Google Scholar 

  25. Bhattacharya, R.N. and Lee, C., Ergodicity of Nonlinear First Order Autoregressive Models, J. Theoret. Probab., 1995, vol. 8, no. 1, pp. 207–219.

    Article  MATH  MathSciNet  Google Scholar 

  26. Lu, Z.D., On the Geometric Ergodicity of a Non-linear Autoregressive Model with an Autoregressive Conditional Heteroscedastic Term, Statist. Sinica, 1998, vol. 8, no. 4, pp. 1205–1217.

    MATH  MathSciNet  Google Scholar 

  27. Chen, M. and Chen, G., Geometric Ergodicity of Nonlinear Autoregressive Models with Changing Conditional Variances, Canad. J. Statist., 2000, vol. 28, no. 3, pp. 605–613.

    Article  MATH  MathSciNet  Google Scholar 

  28. Tjøstheim, D. and Auestad, B.H., Nonparametric Identification of Nonlinear Time Series: Projections, J. Amer. Statist. Association, 1994, vol. 89, no. 428, pp. 1398–1409.

    Article  Google Scholar 

  29. Collomb, G., Estimation non paramétrique de la régression par la méthode du noyau, Thèse, Univ. Paul Sabatier, Toulouse, 1976.

    Google Scholar 

  30. Davydov, Yu.A., The Convergence of Distributions Which Are Generated by Stationary Random Processes, Teor. Veroyatnost. i Primenen., 1968, vol. 13, no. 4, pp. 730–737.

    MATH  MathSciNet  Google Scholar 

  31. Billingsley, P., Convergence of Probability Measures, New York: Wiley, 1968. Translated under the title Skhodimost’ veroyatnostnykh mer, Moscow: Nauka, 1977.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kitaeva.

Additional information

Original Russian Text © A.V. Kitaeva, G.M. Koshkin, 2010, published in Problemy Peredachi Informatsii, 2010, Vol. 46, No. 1, pp. 25–41.

Supported in part by the Russian Foundation for Basic Research, project no. 09-08-00595a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitaeva, A.V., Koshkin, G.M. Nonparametric semirecursive identification in a wide sense of strong mixing processes. Probl Inf Transm 46, 22–37 (2010). https://doi.org/10.1134/S0032946010010047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032946010010047

Keywords