Abstract
To partially implement the idea of considering nonlinear optimal control problems immediately on the set of Pontryagin extremals (or on quasiextremals if the optimal solution does not exist), we introduce auxiliary functions of canonical variables, which we call bipositional, and the corresponding modified Lagrangian for the problem. The Lagrangian is subject to minimization on the trajectories of the canonical system from the Maximum Principle. This general approach is further specialized for nonconvex problems that are linear in state, leading to a nonstandard dual optimal control problem on the trajectories of the adjoint system. Applying the feedback minimum principle to both original and dual problems, we have obtained a pair of necessary optimality conditions that significantly strengthen the Maximum Principle and admit a constructive realization in the form of an iterative problem solving procedure. The general approach, optimality features, and the iterative solution procedure are illustrated by a series of examples.
Similar content being viewed by others
References
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., et al., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Fizmatgiz, 1961.
Alekseev, V.M., Tikhomirov, V.M., and Fomin, S.V., Optimal’noe upravlenie (Optimal Control), Moscow: Fizmatlit, 2005.
Krotov, V.F., Global Methods in Optimal Control Theory, Monographs and Textbooks in Pure and Applied Mathematics, New York: Marcel Dekker, 1996.
Krotov, V.F. and Gurman, V.I., Metody i zadachi optimal’nogo upravleniya (Optimal Control Methods and Problems), Moscow: Nauka, 1973.
Dykhta, V.A., Weakly Monotone Solutions of the Hamilton-Jacobi Inequality and Optimality Conditions with Positional Controls, Autom. Remote Control, 2014, vol. 75, no. 5, pp. 829–844.
Dykhta, V.A., Weakly Monotone and Generating L-functions in Optimal Control, in Analytic Mechanical, Stability, and Control: Proc. X Int. Chetaev Conf., vol. 3, Section 3, Control, part I, Kazan, June 12–16, 2012, Kazan: Kazan. Gos. Tekh. Univ., 2012, pp. 408–420.
Krasovskii, N.N. and Subbotin, A.I., Pozitsionnye differentsial’nye igry (Positional Differential Games), Moscow: Fizmatlit, 1974.
Subbotin, A.I., Obobshchennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka. Perspektivy dinamicheskoi optimizatsii (Generalized Solutions of First Order Partial Derivative Equations. Prospects of Dynamical Optimization), Izhevsk: Inst. Komp. Issled., 2003.
Clarke, F.H., Ledyaev, Yu.S., Stern, R.J., et al., Nonsmooth Analysis and Control Theory, New York: Springer-Verlag, 1998.
Dykhta, V.A., Lyapunov-Krotov Inequality and Sufficient Conditions in Optimal Control, Itogi Nauki Tekhn., Ser. Sovremen. Mat. Prilozheniya, 2006, vol. 110, pp. 76–108.
Antipina, N.V. and Dykhta, V.A., Linear Lyapunov-Krotov Functions and Sufficient Optimality Conditions in the Form of a Maximum Principle, Izv. Vyssh. Uchebn. Zaved., Mat., 2002, no. 12, pp. 11–21.
Afanas’ev, A.P., Dikusar, V.V., Milyutin, A.A., et al., Neobkhodimoe uslovie v optimal’nom upravlenii (Necessary Condition in Optimal Control), Moscow: Nauka, 1990.
Milyutin, A.A. and Osmolovskii, N.P., Calculus of Variations and Optimal Control, Providence, Rhode Island: Am. Math. Soc., 1998.
Gurman, V.I., Printsip rasshireniya v zadachakh upravleniya (Extension Principle in Control Problems), Moscow: Nauka, 1997, 2nd ed.
Krasnov, I.V. and Shaparev, N.Ya., Optimal’noe upravlenie lazernymi vozdeistviyami (Optimal Control with Laser Influences), Novosibirsk: Nauka, 1989.
Dykhta, V.A., Optimal Pulse Control in Models of Economics and Quantum Electronics, Autom. Remote Control, 1999, vol. 60, no. 11, part 2, pp. 1603–1613.
Agrachev, A.A. and Sachkov, Yu.L., Geometricheskaya teoriya upravleniya (Geometric Control Theory), Moscow: Fizmatlit, 2005.
Yakovenko, G.N., Teoriya upravleniya regulyarnymi sistemami (Control Theory for Regular Systems), Moscow: BINOM, Laboratoriya Znanii, 2008.
Ovsyannikov, L.V., Gruppovoi analiz differentsial’nykh uravnenii (Group Analysis of Differential Equations), Moscow: Nauka, 1978.
Arnol’d, V.I., Matematicheskie metody klassicheskoi mekhaniki (Mathematical Methods of Classical Mechanics), Moscow: Nauka, 1989.
Gantmakher, F.R., Lektsii po analiticheskoi mekhanike (Lectures in Analytic Mechanics), Moscow: Fizmatlit, 2005.
Klark, F., Ledyaev, Yu.S., and Subbotin, A.I., Universal Positional Control and Proximal Targeting in Control Problems under Perturbances in Differential Games, Trudy Mat. Inst. im. V.A. Steklova, 1999, vol. 224, pp. 165–186.
Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with a Discontinuous Right-Hand Side), Moscow: Nauka, 1985.
Sussmann, H.J., A Strong Version of the Lojasiewicz Maximum Principle, in Optimal Control of Differential Equations, Lecture Notes in Pure and Applied Mathematics, Pavel, N.H., Ed., New York: Marcel Dekker, 1994, pp. 1–17.
Artstein, Z., Pontryagin Maximum Principle Revisited with Feedbacks, Eur. J. Control, 2011, vol. 17, no. 1, pp. 46–54.
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © V.A. Dykhta, 2014, published in Avtomatika i Telemekhanika, 2014, No. 11, pp. 19–37.
Rights and permissions
About this article
Cite this article
Dykhta, V.A. Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems. Autom Remote Control 75, 1906–1921 (2014). https://doi.org/10.1134/S0005117914110022
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0005117914110022