Abstract
A one-dimensional (1D) Bose system with dipole-dipole repulsion is studied at zero temperature by means of a quantum Monte Carlo method. It is shown that, in the limit of small linear density, the bosonic system of dipole moments acquires many properties of a system of noninteracting fermions. At larger linear densities, a variational Monte Carlo calculation suggests a crossover from a liquidlike to a solidlike state. The system is superfluid on the liquidlike side of the crossover and is normal deep on the solidlike side. Energy and structural functions are presented for a wide range of densities. Possible realizations of the model are 1D Bose atomic systems, with permanent dipoles or dipoles induced by static field or resonance radiation; or indirect excitons in coupled quantum wires; etc. We propose parameters of a possible experiment and discuss manifestations of the zero-temperature quantum crossover.
Similar content being viewed by others
References
P. O. Schmidt, S. Hensler, J. Werner, et al., Phys. Rev. Lett. 91, 193201 (2003).
J. M. Doyle, R. deCarvalho, C. I. Hancox, and J. M. Doyle, Phys. Rev. A 65, 021604 (2002).
J. Stuhler, P. O. Schmidt, S. Hensler, et al., Phys. Rev. A 64, 031405 (2001).
C. C. Bradley et al., Phys. Rev. A 61, 053407 (2000).
Yu. E. Lozovik, S. Y. Volkov, and M. Willander, JETP Lett. 79, 473 (2004); Yu. E. Lozovik, S. A. Verzakov, and M. Willander, Phys. Lett. A 260, 405 (1999); A. I. Belousov, S. A. Verzakov, and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 114, 322 (1998) [JETP 86, 146 (1998)].
S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett. 89, 130401 (2002).
D. Jaksch, J. I. Cirac, P. Zoller, et al., Phys. Rev. Lett. 85, 2208 (2000).
G. K. Brennen, I. H. Deutsch, and C. J. Williams, Phys. Rev. A 65, 022313 (2002).
D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).
P. M. Lushnikov, Phys. Rev. A 66, 051601 (2002).
D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett. 92, 250 401 (2004).
K. Göral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002); M. Baranov, L. Dobrek, K. Goral, et al., Phys. Scr. 102, 74 (2002).
E. Krotscheck and M. D. Miller, Phys. Rev. B 60, 13038 (1999); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. B 61, R878 (2000); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 85, 2348 (2000).
O. L. Berman, Yu. E. Lozovik, D. W. Snoke, and R. D. Coalson, Phys. Rev. B 70, 235310 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, R. P. Ostroumov, and K. L. Wang, Phys. Status Solidi B 241, 85 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, and V. A. Sharapov, JETP 98, 582 (2004); Yu. E. Lozovik, O. L. Berman, and V. G. Tsvetus, Phys. Rev. B 59, 5627 (1999); Yu. E. Lozovik and O. K. Berman, JETP Lett. 64, 573 (1996); Yu. E. Lozovik, O. L. Berman, and A. M. Ruvinskii, JETP Lett. 69, 616 (1999); Yu. E. Lozovik and A. V. Poushnov, Phys. Lett. A 228, 399 (1997); Yu. E. Lozovik, O. L. Berman, and M. Willander, J. Phys. C 14, 12457 (2002).
Yu. E. Lozovik and V. I. Yudson, JETP Lett. 22, 11 (1975); Sov. Phys. JETP 44, 389 (1976); Solid State Commun. 21, 211 (1977); Physica A (Amsterdam) 93, 493 (1978).
Xu. Zhu, P. B. Littlewood, M. S. Hybertsen, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995); S. Conti, G. Vignale, and A. H. MacDonald, Phys. Rev. B 57, R6846 (1998); M. A. Olivares-Robles and S. E. Ulloa, Phys. Rev. B 64, 115 302 (2001).
S. De Palo, F. Rapisauda, and G. Senatore, Phys. Rev. Lett. 88, 206401 (2002).
A. A. Dremin, V. B. Timofeev, A. V. Larionov, et al., JETP Lett. 76, 450 (2002); R. Rapaport, G. Chen, D. Snoke, et al., Phys. Rev. Lett. 92, 117405 (2004); L. V. Butov, L. S. Levitov, A. V. Mintsev, et al., Phys. Rev. Lett. 92, 117404 (2004); V. V. Krivolapchuk, E. S. Moskalenko, and A. L. Zhmodikov, Phys. Rev. B 64, 045313 (2001).
For details on the DMC method see, for example, J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).
M. Girardeau, J. Math. Phys. 1, 516 (1960).
G. E. Astrakharchik and S. Giorgini, Phys. Rev. A 66, 053614 (2002).
B. Sutherland, J. Math. Phys. 12, 246 (1971); F. Calogero, J. Math. Phys. 10, 2191 (1969); J. Math. Phys. 10, 2197 (1969).
Dynamics and Thermodynamics of Systems with Long-Range Interactions, Ed. by T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens (Springer, Berlin, 2002).
E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).
E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987); S. Zhang, N. Kawashima, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74, 1500 (1995).
G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. A 66, 023603 (2002).
D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer, Berlin, 1979; Mir, Moscow, 1982).
Author information
Authors and Affiliations
Additional information
From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 82, No. 1, 2005, pp. 41–45.
Original English Text Copyright © 2005 by Arkhipov, Astrakharchik, Belikov, Lozovik.
This article was submitted by the authors in English.
Rights and permissions
About this article
Cite this article
Arkhipov, A.S., Astrakharchik, G.E., Belikov, A.V. et al. Ground-state properties of a one-dimensional system of dipoles. Jetp Lett. 82, 39–43 (2005). https://doi.org/10.1134/1.2045336
Received:
Issue Date:
DOI: https://doi.org/10.1134/1.2045336