Ground-state properties of a one-dimensional system of dipoles | JETP Letters Skip to main content
Log in

Ground-state properties of a one-dimensional system of dipoles

  • Condensed Matter
  • Published:
Journal of Experimental and Theoretical Physics Letters Aims and scope Submit manuscript

Abstract

A one-dimensional (1D) Bose system with dipole-dipole repulsion is studied at zero temperature by means of a quantum Monte Carlo method. It is shown that, in the limit of small linear density, the bosonic system of dipole moments acquires many properties of a system of noninteracting fermions. At larger linear densities, a variational Monte Carlo calculation suggests a crossover from a liquidlike to a solidlike state. The system is superfluid on the liquidlike side of the crossover and is normal deep on the solidlike side. Energy and structural functions are presented for a wide range of densities. Possible realizations of the model are 1D Bose atomic systems, with permanent dipoles or dipoles induced by static field or resonance radiation; or indirect excitons in coupled quantum wires; etc. We propose parameters of a possible experiment and discuss manifestations of the zero-temperature quantum crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. O. Schmidt, S. Hensler, J. Werner, et al., Phys. Rev. Lett. 91, 193201 (2003).

    Google Scholar 

  2. J. M. Doyle, R. deCarvalho, C. I. Hancox, and J. M. Doyle, Phys. Rev. A 65, 021604 (2002).

    Google Scholar 

  3. J. Stuhler, P. O. Schmidt, S. Hensler, et al., Phys. Rev. A 64, 031405 (2001).

  4. C. C. Bradley et al., Phys. Rev. A 61, 053407 (2000).

  5. Yu. E. Lozovik, S. Y. Volkov, and M. Willander, JETP Lett. 79, 473 (2004); Yu. E. Lozovik, S. A. Verzakov, and M. Willander, Phys. Lett. A 260, 405 (1999); A. I. Belousov, S. A. Verzakov, and Yu. E. Lozovik, Zh. Éksp. Teor. Fiz. 114, 322 (1998) [JETP 86, 146 (1998)].

    Google Scholar 

  6. S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett. 89, 130401 (2002).

    Google Scholar 

  7. D. Jaksch, J. I. Cirac, P. Zoller, et al., Phys. Rev. Lett. 85, 2208 (2000).

    Article  ADS  Google Scholar 

  8. G. K. Brennen, I. H. Deutsch, and C. J. Williams, Phys. Rev. A 65, 022313 (2002).

    Google Scholar 

  9. D. DeMille, Phys. Rev. Lett. 88, 067901 (2002).

    Google Scholar 

  10. P. M. Lushnikov, Phys. Rev. A 66, 051601 (2002).

    Google Scholar 

  11. D. H. J. O’Dell, S. Giovanazzi, and C. Eberlein, Phys. Rev. Lett. 92, 250 401 (2004).

    Google Scholar 

  12. K. Göral, L. Santos, and M. Lewenstein, Phys. Rev. Lett. 88, 170406 (2002); M. Baranov, L. Dobrek, K. Goral, et al., Phys. Scr. 102, 74 (2002).

  13. E. Krotscheck and M. D. Miller, Phys. Rev. B 60, 13038 (1999); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. B 61, R878 (2000); M. C. Gordillo, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 85, 2348 (2000).

    Google Scholar 

  14. O. L. Berman, Yu. E. Lozovik, D. W. Snoke, and R. D. Coalson, Phys. Rev. B 70, 235310 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, R. P. Ostroumov, and K. L. Wang, Phys. Status Solidi B 241, 85 (2004); Yu. E. Lozovik, I. V. Ovchinnikov, and V. A. Sharapov, JETP 98, 582 (2004); Yu. E. Lozovik, O. L. Berman, and V. G. Tsvetus, Phys. Rev. B 59, 5627 (1999); Yu. E. Lozovik and O. K. Berman, JETP Lett. 64, 573 (1996); Yu. E. Lozovik, O. L. Berman, and A. M. Ruvinskii, JETP Lett. 69, 616 (1999); Yu. E. Lozovik and A. V. Poushnov, Phys. Lett. A 228, 399 (1997); Yu. E. Lozovik, O. L. Berman, and M. Willander, J. Phys. C 14, 12457 (2002).

  15. Yu. E. Lozovik and V. I. Yudson, JETP Lett. 22, 11 (1975); Sov. Phys. JETP 44, 389 (1976); Solid State Commun. 21, 211 (1977); Physica A (Amsterdam) 93, 493 (1978).

    ADS  Google Scholar 

  16. Xu. Zhu, P. B. Littlewood, M. S. Hybertsen, and T. M. Rice, Phys. Rev. Lett. 74, 1633 (1995); S. Conti, G. Vignale, and A. H. MacDonald, Phys. Rev. B 57, R6846 (1998); M. A. Olivares-Robles and S. E. Ulloa, Phys. Rev. B 64, 115 302 (2001).

    Article  ADS  Google Scholar 

  17. S. De Palo, F. Rapisauda, and G. Senatore, Phys. Rev. Lett. 88, 206401 (2002).

    Google Scholar 

  18. A. A. Dremin, V. B. Timofeev, A. V. Larionov, et al., JETP Lett. 76, 450 (2002); R. Rapaport, G. Chen, D. Snoke, et al., Phys. Rev. Lett. 92, 117405 (2004); L. V. Butov, L. S. Levitov, A. V. Mintsev, et al., Phys. Rev. Lett. 92, 117404 (2004); V. V. Krivolapchuk, E. S. Moskalenko, and A. L. Zhmodikov, Phys. Rev. B 64, 045313 (2001).

    ADS  Google Scholar 

  19. For details on the DMC method see, for example, J. Boronat and J. Casulleras, Phys. Rev. B 49, 8920 (1994).

    Article  ADS  Google Scholar 

  20. M. Girardeau, J. Math. Phys. 1, 516 (1960).

    Article  MATH  MathSciNet  Google Scholar 

  21. G. E. Astrakharchik and S. Giorgini, Phys. Rev. A 66, 053614 (2002).

    Google Scholar 

  22. B. Sutherland, J. Math. Phys. 12, 246 (1971); F. Calogero, J. Math. Phys. 10, 2191 (1969); J. Math. Phys. 10, 2197 (1969).

    Google Scholar 

  23. Dynamics and Thermodynamics of Systems with Long-Range Interactions, Ed. by T. Dauxois, S. Ruffo, E. Arimondo, and M. Wilkens (Springer, Berlin, 2002).

    Google Scholar 

  24. E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).

    ADS  MathSciNet  Google Scholar 

  25. E. L. Pollock and D. M. Ceperley, Phys. Rev. B 36, 8343 (1987); S. Zhang, N. Kawashima, J. Carlson, and J. E. Gubernatis, Phys. Rev. Lett. 74, 1500 (1995).

    Article  ADS  Google Scholar 

  26. G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. A 66, 023603 (2002).

    Google Scholar 

  27. D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, Ed. by K. Binder (Springer, Berlin, 1979; Mir, Moscow, 1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Pis’ma v Zhurnal Éksperimental’no\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) i Teoretichesko\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{l} \) Fiziki, Vol. 82, No. 1, 2005, pp. 41–45.

Original English Text Copyright © 2005 by Arkhipov, Astrakharchik, Belikov, Lozovik.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arkhipov, A.S., Astrakharchik, G.E., Belikov, A.V. et al. Ground-state properties of a one-dimensional system of dipoles. Jetp Lett. 82, 39–43 (2005). https://doi.org/10.1134/1.2045336

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.2045336

PACS numbers

Navigation