Abstract

A crucial part of any recommendation system for manufactured goods is the method used to evaluate the similarity of products. However, despite being central to the performance of many online retailers, current ways of evaluating product similarity are inconsistent with several characteristics of human perception and consequently often generate obvious errors when applied in practice. This paper proposes a new approach that uses the results of a perceptual evaluation of respondents to determine their “inherent knowledge hierarchy.” Using this characterization of the user, we propose a new strategy for determining the perceived similarity of products (PSIM strategy). After a preliminary verification of the proposed approach, we found that the performance of the PSIM strategy is much better than current strategies in terms of both accuracy and robustness. Beyond the application of PSIM in product recommendation systems, the findings of this study have the potential to help designers and companies better understand their customers’ emotional needs.

References

1.
Jacob
,
J.
,
1984
, “
Perspectives on Information Overload
,”
J. Consum. Res.
,
10
(
4
), pp.
432
435
.
2.
Schafer
,
J. B.
,
Konstan
,
J.
, and
Riedl
,
J.
,
1999
, “
Recommender Systems in E-Commerce
,”
World Automation Congress IEEE
, pp.
158
166
.
3.
Mooney
,
R. J.
, and
Roy
,
L.
,
2000
, “
Content-Based Book Recommending Using Learning for Text Categorization
,”
Proceedings of the Fifth ACM Conference on Digital Libraries
,
San Antonio, TX
,
June 2–7
, pp.
195
204
.
4.
Phelan
,
O.
,
Mccarthy
,
K.
,
Bennett
,
M.
, and
Smyth
,
B.
,
2011
, “
Terms of a Feather: Content-Based News Discovery and Recommendation Using Twitter
,”
Advances in Information Retrieval—33rd European Conference on IR Research, ECIR 2011
,
Dublin, Ireland
,
Apr. 18–21
,
Springer-Verlag
, pp.
448
459
.
5.
Chou
,
J. R.
,
2016
, “
A Kansei Evaluation Approach Based on the Technique of Computing With Words
,”
Adv. Eng. Inform.
,
30
(
1
), pp.
1
15
.
6.
Chang
,
C. C.
, and
Wu
,
J. C.
,
2009
, “
The Underlying Factors Dominating Categorical Perception of Product Form of Mobile Phones
,”
Int. J. Ind. Ergon.
,
39
(
5
), pp.
667
680
.
7.
Jiang
,
H.
,
Kwong
,
C. K.
,
Park
,
W. Y.
, and
Yu
,
K. M.
,
2018
, “
A Multi-objective PSO Approach of Mining Association Rules for Affective Design Based on Online Customer Reviews
,”
J. Eng. Des.
,
29
(
7
), pp.
381
403
.
8.
Wang
,
Y.
,
Chen
,
Y.
, and
Chen
,
Z. G.
,
2008
, “
The Sensory Research on the Style of Women's Overcoats
,”
Int. J. Cloth. Sci. Technol.
,
20
(
3
), pp.
174
183
.
9.
Wang
,
J.
,
Vries
,
A.
, and
Reinders
,
M.
,
2006
, “
Unifying User-Based and Item-Based Collaborative Filtering Approaches by Similarity Fusion
,”
SIGIR 2006: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
,
Seattle, WA
,
Aug. 6–11
,
ACM
, pp.
501
508
.
10.
Gao
,
M.
,
Wu
,
Z.
, and
Jiang
,
F.
,
2011
, “
Userrank for Item-Based Collaborative Filtering Recommendation
,”
Inf. Process. Lett.
,
9
(
111
), pp.
440
446
.
11.
Sarwar
,
B.
,
2001
, “
Item-Based Collaborative Filtering Recommendation Algorithms
,”
Proceedings of the 10th International World Wide Web Conference (WWW10)
,
Hong Kong
,
May 1–5
.
12.
Mobasher
,
B.
,
Burke
,
R. D.
, and
Sandvig
,
J. J.
,
2006
, “
Model-Based Collaborative Filtering as a Defense Against Profile Injection Attacks
,”
Proceedings, The Twenty-First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence Conference
,
Boston, MA
,
July 16–20
, pp.
1388
1393
.
13.
Aggarwal
,
C. C.
,
2016
,
Model-Based Collaborative Filtering
,
Springer International Publishing
,
Yorktown Heights, NY
.
14.
Wang
,
L.
,
Zhang
,
Y.
, and
Feng
,
J.
,
2005
, “
On the Euclidean Distance of Images
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
8
), pp.
1334
1339
.
15.
Maesschalck
,
R. D.
,
Jouan-Rimbaud
,
D.
, and
Massart
,
D. L.
,
2000
, “
The Mahalanobis Distance
,”
Chemom. Intell. Lab. Syst.
,
50
(
1
), pp.
1
18
.
16.
Nguyen
,
V.
, and
Bai
,
L.
,
2011
, “
Cosine Similarity Metric Learning for Face Verification
,”
ACCV 2010, Part II. LNCS
,
Queenstown, New Zealand
,
Nov. 8–9
, pp.
709
720
.
17.
Ye
,
J.
,
2011
, “
Cosine Similarity Measures for Intuitionistic Fuzzy Sets and Their Applications
,”
Math. Comput. Model.
,
53
(
1–2
), pp.
91
97
.
18.
Shieh
,
M.
, and
Yeh
,
Y.
,
2015
, “
A Comparative Study on Perceptual Evaluations of Sports Shoe Exterior Colors in Taiwan
,”
Color Res. Appl.
,
40
(
2
),
178
193
.
19.
Shieh
,
M. D.
,
Li
,
Y.
, and
Yang
,
C. C.
,
2018
, “
Comparison of Multi-objective Evolutionary Algorithms in Hybrid Kansei Engineering System for Product Form Design
,”
Adv. Eng. Inform.
,
36
, pp.
31
42
.
20.
Gaspar
,
J.
,
Fontul
,
M.
,
Henriques
,
E.
, and
Silva
,
A.
,
2014
, “
User Satisfaction Modeling Framework for Automotive Audio Interfaces
,”
Int. J. Ind. Ergon.
,
44
(
50
), pp.
662
674
.
21.
Jordan
,
P. W.
,
1998
, “
Human Factors for Pleasure in Product Use
,”
Appl. Ergon.
,
29
(
1
), pp.
25
33
.
22.
Lin
,
M. H.
,
Wang
,
C. Y.
,
Cheng
,
S. K.
, and
Cheng
,
S. H.
,
2011
, “
An Event-Related Potential Study of Semantic Style-Match Judgments of Artistic Furniture
,”
Int. J. Psychophysiol.
,
82
(
2
), pp.
188
195
.
23.
Chang
,
Y. M.
, and
Chen
,
C. W.
,
2016
, “
Kansei Assessment of the Constituent Elements and the Overall Interrelations in Car Steering Wheel Design
,”
Int. J. Ind. Ergon.
,
56
, pp.
97
105
.
24.
Hsiao
,
S. W.
, and
Peng
,
P. H.
,
2020
, “
Using FCE and FAHP to Explore the Multirotor Drone Appearance Preference
,”
Design Research Society Conference 2020
,
virtual
,
Aug. 11–14
, pp.
2267
2283
.
25.
Sheugh
,
L.
, and
Alizadeh
,
S. H.
,
2015
, “
A Note on Pearson Correlation Coefficient as a Metric of Similarity in Recommender System
,”
2015 AI & Robotics (IRANOPEN)
,
Qazvin, Iran
,
Apr. 12
, pp.
1
6
.
26.
Bobadilla
,
J.
,
Serradilla
,
F.
, and
Bernal
,
J.
,
2010
, “
A New Collaborative Filtering Metric That Improves the Behavior of Recommender Systems
,”
Knowl. Based Syst.
,
23
(
6
), pp.
520
528
.
27.
Jamali
,
M.
, and
Trustwalker
,
E. M.
,
2009
, “
A Random Walk Model for Combining Trust-Based and Item-Based Recommendation
,”
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Paris, France
,
June 28–July 1
, pp.
397
406
.
28.
Patra
,
B. K.
,
Launonen
,
R.
,
Ollikainen
,
V.
, and
Nandi
,
S.
, “
A New Similarity Measure Using Bhattacharyya Coefficient for Collaborative Filtering in Sparse Data
,”
Knowl. Based Syst.
,
82
, pp.
163
177
.
29.
Silayoi
,
P.
, and
Speece
,
M.
,
2004
, “
Packaging and Purchase Decisions: A Focus Group Study on the Impact of Involvement Level and Time Pressure
,”
British Food J.
,
106
, pp.
607
628
.
30.
Cooper
,
R. G.
, and
Kleinschmidt
,
E. J.
,
1987
, “
Success Factors in Product Innovation
,”
Ind. Mark. Manage.
,
16
(
3
), pp.
215
223
.
31.
Jensen
,
R.
,
2001
, “
The Dream Society: How the Coming Shift From Information to Imagination Will Transform Your Business
,”
Libr. J.
,
124
(
7
), pp.
112
113
.
32.
Hui
,
Q.
,
Li
,
Y.
,
Tao
,
Y.
, and
Liu
,
H.
,
2020
, “
Triple-Helix Structured Model Based on Problem-Knowledge-Solution Co-Evolution for Innovative Product Design Process
,”
Chin. J. Mech. Eng.
,
33
(
1
), pp.
1
15
.
33.
Guo
,
X.
,
Liu
,
Y.
,
Zhao
,
W.
,
Wang
,
J.
, and
Chen
,
L.
,
2021
, “
Supporting Resilient Conceptual Design Using Functional Decomposition and Conflict Resolution
,”
Adv. Eng. Inform.
,
48
, p.
101262
.
34.
Krause
,
J.
,
Stark
,
M.
,
Deng
,
J.
, and
Fei-Fei
,
L.
,
2014
, “
3D Object Representations for Fine-Grained Categorization
,”
IEEE International Conference on Computer Vision Workshops IEEE
,
Sydney, NSW, Australia
,
Dec. 1–8
, pp.
554
561
.
35.
Liu
,
Z.
,
Luo
,
P.
,
Qiu
,
S.
,
Wang
,
X.
, and
Tang
,
X.
,
2016
, “
DeepFashion: Powering Robust Clothes Recognition and Retrieval With Rich Annotations
,”
Comput. Vis. Pattern Recognit.
, pp.
1096
1104
.
36.
Yu
,
A.
, and
Grauman
,
K.
,
2014
, “
Fine-Grained Visual Comparisons With Local Learning
,”
IEEE Conference on Computer Vision & Pattern Recognition IEEE
,
Columbus, OH
,
June 23–28
, pp.
192
199
.
37.
Norman
,
D. A.
,
1998
,
The Design of Everyday Things
,
The MIT Press
,
Cambridge, MA
.
38.
Nagamachi
,
M.
,
2002
, “
Kansei Engineering as a Powerful Consumer-Oriented Technology for Product Development
,”
Appl. Ergon.
,
33
(
3
), pp.
289
294
.
39.
Huang
,
Y.
,
Chen
,
C. H.
, and
Li
,
P. K.
,
2012
, “
Kansei Clustering for Emotional Design Using a Combined Design Structure Matrix
,”
Int. J. Ind. Ergon.
,
42
(
5
), pp.
416
427
.
40.
Osgood
,
C. E.
,
1957
, “
The Measurement of Meaning
,”
Aud. Vis. Commun. Rev.
, pp.
503
504
.
41.
Meesad
,
P.
, and
Hengpraprohm
,
K.
,
2008
, “
Combination of KNN-Based Feature Selection and KNNBased Missing-Value Imputation of Microarray Data
,”
International Conference on Innovative Computing Information & Control
,
Dalian, China
,
June 18–20
, IEEE, p.
341
.
42.
Rosas
,
A. C.
,
1984
,
“Some Applications of Fuzzy Sets and the Analytical Hierarchy Process to Decision Making,”Naval Postgraduate School
.
43.
Matzhold
,
C.
,
2017
,
“A Methodological Proposal on How to Use the Analytic Hierarchy Process Technique to Improve Need-based Solution Knowledge Strategies,” University of Vienna, Austria
.
44.
Halevy
,
N.
,
Sagiv
,
L.
,
Roccas
,
S.
, and
Bornstein
,
G.
,
2006
, “
Perceiving Intergroup Conflict: From Game Models to Mental Templates
,”
Pers. Soc. Psychol. Bull.
,
32
(
12
), pp.
1674
1689
.
45.
Campbell
,
T.
,
O’Brien
,
E.
,
Boven
,
L. V.
,
Schwarz
,
N.
, and
Ubel
,
P.
,
2014
, “
Too Much Experience: A Desensitization Bias in Emotional Perspective Taking
,”
J. Pers. Soc. Psychol.
,
106
(
2
), pp.
272
285
.
46.
Ozkaramanli
,
D.
,
Ozcan Vieira
,
E.
, and
Desmet
,
P. M.
,
2014
, “
Capturing Conflict Experiences: Five Methods for Identifying Intra-personal Concern Conflicts
,”
Salamanca
,
J.
,
P.
Desmet
,
A.
Burbano
,
G.
Ludden
&
J.
Maya
(eds),
Proceedings of the 9th International Conference on Design & Emotion; Colors of Care
,
Bogotá
,
Oct. 6–10
, Ediciones Uniandes, pp.
317
324
.
47.
Devore
,
J. L.
,
2011
, “
Probability and Statistics for Engineering and the Sciences
,” Cengage Learning. 5A4RRRRR0RRRR.
48.
Shardanand
,
U.
, and
Maes
,
P.
,
1995
, “
Social Information Filtering: Algorithms for Automating ‘‘Word of Mouth”
,
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
Denver, CO
,
May 7–11
, pp.
210
217
.
You do not currently have access to this content.