Abstract

Digital twin, a new emerging and fast-growing technology which is one of the most promising technologies for smart design and manufacturing, has attracted much attention worldwide recently. With the application of digital twin, product performance evaluation has entered the data-driven era. However, traditional methods for evaluation mainly place emphasis on structure analysis in the stage of manufacturing and service in digital twin. They cannot synthesize multi-source information and take the high-level emotional response into consideration in the design stage. To overcome these disadvantages, a digital twin-driven method is proposed evaluating product design schemes in this study. It enables the acquisition of electroencephalogram (EEG) data, physical data, and emotional feedback. Human factors are systematically considered in the evaluation process to establish the information association between EEG and performance levels. Moreover, intelligent psycho-physiological analysis that incorporates EEG into the fuzzy comprehensive evaluation (FCE) and machine learning methods is adopted within the proposed method. It synthesizes human factors such as psychological requirements, subjective and objective assessment indicators to realize a novel machine learning-based EEG analysis. Taking advantage of the binary particle swarm optimization (BPSO) improved Riemannian manifold mapping, Riemann geometry (RG) features are extracted and selected from EEG signals. Differences of implicit psychological states while using the product produced by different design schemes can be more easily detected and classified. A case study of high-speed elevator is conducted to verify the feasibility and effectiveness of the proposed method. The accuracy of EEG classification for performance evaluation reaches 92%.

References

1.
Kusiak
,
A.
,
2017
, “
Smart Manufacturing Must Embrace Big Data
,”
Nature
,
544
(
7648
), pp.
23
25
. 10.1038/544023a
2.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
. 10.1109/TII.2018.2873186
3.
Grieves
,
M.
,
2014
, “
Digital Twin: Manufacturing Excellence Through Virtual Factory Replication
,”
White Paper
, pp.
1
7
.
4.
He
,
B.
, and
Bai
,
K.-J.
,
2020
, “
Digital Twin-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
, pp.
1
21
. 10.1007/s40436-020-00302-5
5.
Burnett
,
D.
,
Thorp
,
J.
,
Richards
,
D.
,
Gorkovenko
,
K.
, and
Murray-Rust
,
D.
,
2019
, “
Digital Twins as a Resource for Design Research
,”
Proceedings of the 8th ACM International Symposium on Pervasive Displays
,
ACM
,
New York, NY
,
June 12
, pp.
1
2
.
6.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
. 10.1115/1.4043529
7.
Hu
,
B.
,
Feng
,
Y.
,
Gao
,
Y.
,
Zheng
,
H.
, and
Tan
,
J.
,
2019
, “
A Digital Twin-Driven Improved Design Approach of Drawing Bench for Brazing Material
,”
Volume 2A: 45th Design Automation Conference
,
Anaheim, CA
,
Aug. 18
.
8.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
9.
Tao
,
F.
,
Sui
,
F.
,
Liu
,
A.
,
Qi
,
Q.
,
Zhang
,
M.
,
Song
,
B.
,
Guo
,
Z.
,
Lu
,
S. C.-Y.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin-Driven Product Design Framework
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3935
3953
. 10.1080/00207543.2018.1443229
10.
Du
,
J.
,
Zhu
,
Q.
,
Shi
,
Y.
,
Wang
,
Q.
,
Lin
,
Y.
, and
Zhao
,
D.
,
2020
, “
Cognition Digital Twins for Personalized Information Systems of Smart Cities: Proof of Concept
,”
J. Manage. Eng
,
36
(
2
), p.
4019052
. 10.1061/(ASCE)ME.1943-5479.0000740
11.
Li
,
J.
,
Tao
,
F.
,
Cheng
,
Y.
, and
Zhao
,
L.
,
2015
, “
Big Data in Product Lifecycle Management
,”
Int. J. Adv. Manuf. Technol.
,
81
(
1-4
), pp.
667
684
. 10.1007/s00170-015-7151-x
12.
Lou
,
S.
,
Feng
,
Y.
,
Li
,
Z.
,
Zheng
,
H.
,
Gao
,
Y.
, and
Tan
,
J.
,
2020
, “
An Edge-Based Distributed Decision-Making Method for Product Design Scheme Evaluation
,”
IEEE Trans. Ind. Inf.
,
17
(
2
), pp.
1375
1385
. 10.1109/TII.2020.2983979
13.
The International Organization for Standardization
,
2012
, “
ISO 18738-2012 Measurement of Ride Quality—Part 1 Lifts (Elevators)
.”
14.
Kim
,
E.-Y.
,
Lee
,
Y.-J.
, and
Lee
,
S.-K.
,
2012
, “
Sound Metric Design for Evaluation of Tonal Sound in Laser Printer
,”
Int. J. Precis. Eng. Manuf.
,
13
(
8
), pp.
1349
1358
. 10.1007/s12541-012-0178-0
15.
Lou
,
S.
,
Feng
,
Y.
,
Zheng
,
H.
,
Gao
,
Y.
, and
Tan
,
J.
,
2018
, “
Data-Driven Customer Requirements Discernment in the Product Lifecycle Management via Intuitionistic Fuzzy Sets and Electroencephalogram
,”
J. Intell. Manuf.
,
125
(
6
), p.
136
. 10.1007/s10845-018-1395-x
16.
Gallagher
,
P.
, and
MacLachlan
,
M.
,
2000
, “
Development and Psychometric Evaluation of the Trinity Amputation and Prosthesis Experience Scales (TAPES)
,”
Rehabil. Psychol.
,
45
(
2
), pp.
130
154
. 10.1037/0090-5550.45.2.130
17.
Chiu
,
M.-C.
,
Tsai
,
C.-D.
, and
Li
,
T.-L.
,
2020
, “
An Integrative Machine Learning Method to Improve Fault Detection and Productivity Performance in a Cyber-Physical System
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021009
. 10.1115/1.4045663
18.
Sun
,
Z.
,
Reani
,
M.
,
Li
,
Q.
, and
Ma
,
X.
,
2020
, “
Fostering Engagement in Technology-Mediated Stress Management: A Comparative Study of Biofeedback Designs
,”
Int. J. Hum.-Comput. Stud.
,
140
, p.
102430
. 10.1016/j.ijhcs.2020.102430
19.
Ramkumar
,
A.
,
Stappers
,
P. J.
,
Niessen
,
W. J.
,
Adebahr
,
S.
,
Schimek-Jasch
,
T.
,
Nestle
,
U.
, and
Song
,
Y.
,
2017
, “
Using GOMS and NASA-TLX to Evaluate Human–Computer Interaction Process in Interactive Segmentation
,”
Int. J. Hum.–Comput. Interact.
,
33
(
2
), pp.
123
134
. 10.1080/10447318.2016.1220729
20.
Aromaa
,
S.
, and
Väänänen
,
K.
,
2016
, “
Suitability of Virtual Prototypes to Support Human Factors/Ergonomics Evaluation During the Design
,”
Appl. Ergon.
,
56
, pp.
11
18
. 10.1016/j.apergo.2016.02.015
21.
Malinverni
,
L.
,
Mora-Guiard
,
J.
, and
Pares
,
N.
,
2016
, “
Towards Methods for Evaluating and Communicating Participatory Design: A Multimodal Approach
,”
Int. J. Hum.-Comput. Stud.
,
94
, pp.
53
63
. 10.1016/j.ijhcs.2016.03.004
22.
Beckerle
,
P.
,
Christ
,
O.
,
Schürmann
,
T.
,
Vogt
,
J.
,
von Stryk
,
O.
, and
Rinderknecht
,
S.
,
2017
, “
A Human–Machine-Centered Design Method for (Powered) Lower Limb Prosthetics
,”
Rob. Auton. Syst.
,
95
, pp.
1
12
. 10.1016/j.robot.2017.05.004
23.
Borgianni
,
Y.
, and
Maccioni
,
L.
,
2020
, “
Review of the Use of Neurophysiological and Biometric Measures in Experimental Design Research
,”
AIEDAM
,
34
(
2
), pp.
1
38
. 10.1017/S0890060420000062
24.
Zhang
,
Y.
,
Ji
,
X.
, and
Zhang
,
S.
,
2016
, “
An Approach to EEG-Based Emotion Recognition Using Combined Feature Extraction Method
,”
Neurosci. Lett.
,
633
, pp.
152
157
. 10.1016/j.neulet.2016.09.037
25.
Lou
,
S.
,
Feng
,
Y.
,
Tian
,
G.
,
Lv
,
Z.
,
Li
,
Z.
, and
Tan
,
J.
,
2017
, “
A Cyber-Physical System for Product Conceptual Design Based on an Intelligent Psycho-Physiological Approach
,”
IEEE Access
,
5
, pp.
5378
5387
. 10.1109/ACCESS.2017.2686986
26.
Lan
,
Z.
,
Sourina
,
O.
,
Wang
,
L.
, and
Liu
,
Y.
,
2016
, “
Real-Time EEG-Based Emotion Monitoring Using Stable Features
,”
Vis. Comput
,
32
(
3
), pp.
347
358
. 10.1007/s00371-015-1183-y
27.
Barachant
,
A.
,
Bonnet
,
S.
,
Congedo
,
M.
, and
Jutten
,
C.
,
2012
, “
Multiclass Brain-Computer Interface Classification by Riemannian Geometry
,”
IEEE Trans. Bio-Med. Eng.
,
59
(
4
), pp.
920
928
. 10.1109/TBME.2011.2172210
28.
Nguyen
,
C. H.
,
Karavas
,
G. K.
, and
Artemiadis
,
P.
,
2018
, “
Inferring Imagined Speech Using EEG Signals: A New Approach Using Riemannian Manifold Features
,”
J. Neural Eng.
,
15
(
1
), p.
16002
. 10.1088/1741-2552/aa8235
29.
Barachant
,
A.
,
Bonnet
,
S.
,
Congedo
,
M.
, and
Jutten
,
C.
,
2013
, “
Classification of Covariance Matrices Using a Riemannian-Based Kernel for BCI Applications
,”
Neurocomputing
,
112
, pp.
172
178
. 10.1016/j.neucom.2012.12.039
30.
Yger
,
F.
,
Berar
,
M.
, and
Lotte
,
F.
,
2017
, “
Riemannian Approaches in Brain-Computer Interfaces: A Review
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
10
), pp.
1753
1762
. 10.1109/TNSRE.2016.2627016
31.
Ma
,
X.
,
Tao
,
F.
,
Zhang
,
M.
,
Wang
,
T.
, and
Zuo
,
Y.
,
2019
, “
Digital Twin Enhanced Human-Machine Interaction in Product Lifecycle
,”
Procedia CIRP
,
83
, pp.
789
793
. 10.1016/j.procir.2019.04.330
32.
Lee
,
J. D.
, and
Kirlik
,
A.
,
2013
,
The Oxford Handbook of Cognitive Engineering
,
Oxford University Press
,
New York
.
33.
Jain
,
N.
, and
Singh
,
A. R.
,
2020
, “
Sustainable Supplier Selection Under Must-be Criteria Through Fuzzy Inference System
,”
J. Cleaner Prod.
,
248
, p.
119275
. 10.1016/j.jclepro.2019.119275
34.
Zhang
,
Y.
,
Sun
,
X.
,
Zhao
,
X.
, and
Su
,
W.
,
2018
, “
Elevator Ride Comfort Monitoring and Evaluation Using Smartphones
,”
Mech. Syst. Sig. Process.
,
105
, pp.
377
390
. 10.1016/j.ymssp.2017.12.005
35.
Bai
,
C.
,
Dhavale
,
D.
, and
Sarkis
,
J.
,
2014
, “
Integrating Fuzzy C-Means and TOPSIS for Performance Evaluation: An Application and Comparative Analysis
,”
Expert Syst. Appl.
,
41
(
9
), pp.
4186
4196
. 10.1016/j.eswa.2013.12.037
36.
Jing
,
L.
,
Peng
,
X.
,
Li
,
J.
,
Wang
,
J.
, and
Jiang
,
S.
,
2018
, “
A Decision Approach With Multiple Interactive Qualitative Objectives for Product Conceptual Schemes Based on Noncooperative-Cooperative Game Theory
,”
Adv. Eng. Inform.
,
38
, pp.
581
592
. 10.1016/j.aei.2018.09.004
37.
Du
,
Y.-W.
,
Wang
,
S.-S.
, and
Wang
,
Y.-M.
,
2019
, “
Group Fuzzy Comprehensive Evaluation Method Under Ignorance
,”
Expert Syst. Appl.
,
126
, pp.
92
111
. 10.1016/j.eswa.2019.02.006
38.
Xie
,
Q.
,
Ni
,
J.-Q.
, and
Su
,
Z.
,
2017
, “
Fuzzy Comprehensive Evaluation of Multiple Environmental Factors for Swine Building Assessment and Control
,”
J. Hazard. Mater.
,
340
, pp.
463
471
. 10.1016/j.jhazmat.2017.07.024
39.
Blankertz
,
B.
,
Tomioka
,
R.
,
Lemm
,
S.
,
Kawanabe
,
M.
, and
Muller
,
K.-r.
,
2008
, “
Optimizing Spatial Filters for Robust EEG Single-Trial Analysis
,”
IEEE Signal Process. Mag.
,
25
(
1
), pp.
41
56
. 10.1109/MSP.2008.4408441
40.
Wu
,
W.
,
Chen
,
Z.
,
Gao
,
X.
,
Li
,
Y.
,
Brown
,
E. N.
, and
Gao
,
S.
,
2015
, “
Probabilistic Common Spatial Patterns for Multichannel EEG Analysis
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
37
(
3
), pp.
639
653
. 10.1109/TPAMI.2014.2330598
41.
Zanini
,
P.
,
Congedo
,
M.
,
Jutten
,
C.
,
Said
,
S.
, and
Berthoumieu
,
Y.
,
2018
, “
Transfer Learning: A Riemannian Geometry Framework With Applications to Brain-Computer Interfaces
,”
IEEE Trans. Bio-Med. Eng.
,
65
(
5
), pp.
1107
1116
. 10.1109/TBME.2017.2742541
42.
Lotte
,
F.
,
Bougrain
,
L.
,
Cichocki
,
A.
,
Clerc
,
M.
,
Congedo
,
M.
,
Rakotomamonjy
,
A.
, and
Yger
,
F.
,
2018
, “
A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces: A 10 Year Update
,”
J. Neural Eng.
,
15
(
3
), p.
31005
. 10.1088/1741-2552/aab2f2
43.
Kennedy
,
J.
, and
Eberhart
,
R. C.
,
1997
, “
A Discrete Binary Version of the Particle Swarm Algorithm
,”
1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation
,
Orlando, FL
,
Oct. 12–15
.
44.
Reséndiz-Flores
,
E. O.
,
Navarro-Acosta
,
J. A.
, and
Hernández-Martínez
,
A.
,
2020
, “
Optimal Feature Selection in Industrial Foam Injection Processes Using Hybrid Binary Particle Swarm Optimization and Gravitational Search Algorithm in the Mahalanobis–Taguchi System
,”
Soft Comput.
,
24
(
1
), pp.
341
349
. 10.1007/s00500-019-03911-w
45.
Bharti
,
K. K.
, and
Singh
,
P. K.
,
2016
, “
Opposition Chaotic Fitness Mutation Based Adaptive Inertia Weight BPSO for Feature Selection in Text Clustering
,”
Appl. Soft Comput.
,
43
, pp.
20
34
. 10.1016/j.asoc.2016.01.019
46.
Chen
,
Y.
,
Wang
,
Y.
,
Cao
,
L.
, and
Jin
,
Q.
,
2019
, “
CCFS: A Confidence-Based Cost-Effective Feature Selection Scheme for Healthcare Data Classification
,”
IEEE/ACM Trans. Comput. Biol. Bioinform.
10.1109/TCBB.2019.2903804
You do not currently have access to this content.