Mathematical tools underlie a method that has strong potential to lower the cost of fixture-setup when finishing large castings that have machined surfaces where other components are attached. One math tool, the kinematic transformation, is used for the first time to construct Tolerance-Map® (T-Map)® models of geometric and size tolerances that are applied to planar faces and to the axes of round shapes, such as pins or holes. For any polygonal planar shape, a generic T-Map primitive is constructed at each vertex of its convex hull, and each is sheared uniquely with the kinematic transformation. All are then intersected to form the T-Map of the given shape in a single frame of reference. For an axis, the generic T-Map primitive represents each circular limit to its tolerance-zone. Both are transformed to a central frame of reference and are intersected to form the T-Map. The paper also contains the construction for the first five-dimensional (5D) T-Map for controlling the minimum wall thickness between two concentric cylinders with a least-material-condition (LMC) tolerance specification on position. It is formed by adding the dimension of size to the T-Map for an axis. The T-Maps described are consistent with geometric dimensioning and tolerancing standards and industry practice. Finally, transformations are presented to translate between small displacement torsor (SDT) coordinates and the classical coordinates for lines and planes used in T-Maps.

References

1.
Haghighi
,
P.
,
Ramnath
,
S.
,
Kalish
,
N.
,
Shah
,
J. V.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2016
, “
Method for Automating Digital Fixture Set-Ups That are Optimal for Machining Castings to Minimize Scrap
,”
J. Manuf. Syst.
,
40
(
2
), pp.
15
22
.
2.
Kalish
,
N. J.
,
2016
, “
The Theory Behind Setup Maps: A Computational Tool to Position Parts for Machining
,”
M.Sc. thesis
, Arizona State University, Tempe, AZ.https://search.proquest.com/openview/a62cb4b82ad125abc1b3d6ba4cab1810/1?pq-origsite=gscholar&cbl=18750&diss=y
3.
Rong
,
Y. K.
, and
Zhu
,
Y. S.
,
1999
,
Computer-Aided Fixture Design
,
Marcel Dekker
,
New York
.
4.
Wu
,
Y.
,
Rong
,
Y.
,
Ma
,
W.
, and
LeClair
,
S. R.
,
1998
, “
Automated Modular Fixture Planning: Geometric Analysis
,”
Rob. Comput.-Integr. Manuf.
,
14
(
1
), pp.
1
5
.
5.
Carlson
,
J. S.
,
2001
, “
Quadratic Sensitivity Analysis of Fixtures and Locating Schemes for Rigid Parts
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
462
72
.
6.
Bobrow
,
J. E.
,
1985
, “
N/C Machine Tool-Path Generation From CSG Part Representation
,”
Comput.-Aided Des.
,
17
(
2
), pp.
69
76
.
7.
American National Standard,
2009
, “
Dimensioning and Tolerancing
,”
The American Society of Mechanical Engineers
,
New York
, Standard No.
ASME Y14.5M
.https://www.asme.org/products/codes-standards/y145-2009-dimensioning-and-tolerancing
8.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2002
, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
1
), pp.
95
104
.
9.
Mujezinovič
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.
10.
Bhide
,
S.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2003
, “
A New Mathematical Model for Geometric Tolerances as Applied to Axes
,”
ASME
Paper No. DETC2003/DAC-48736.
11.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
4
), pp.
347
359
.
12.
Mohan
,
P.
,
Haghighi
,
P.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2015
, “
Development of a Library of Feature Fitting Algorithms for CMMs
,”
Int. J. Precis. Eng. Manuf.
,
16
(
10
), pp. 2101–2113.
13.
Coxeter
,
H. S. M.
,
1969
,
Introduction to Geometry
, 2nd ed.,
Wiley
,
Toronto, ON
.
14.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory: Applications of Kinematics and Statics to Robotics
,
Oxford University Press
,
Oxford, UK
.
15.
Cayley
,
A.
,
1869
, “
On the Six Coordinates of a Line
,”
Trans. Cambridge Philos. Soc.
,
11
(
II
), pp.
290
323
.
16.
Bourdet
,
P.
, and
Clément
,
A.
,
1988
, “
A Study of Optimal Criteria Identification Based on the Small Displacement Screw Model
,”
Ann. CIRP
,
37
(
1
), pp.
503
506
.
17.
Desrochers
,
A.
,
Ghie
,
W.
, and
Laperriere
,
L.
,
2003
, “
Application of a Unified Jacobian-Torsor Model for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
2
14
.
18.
Ameta
,
G.
,
Samper
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021004
.
19.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101008
.
20.
Yuan
,
M. S. C.
, and
Freudenstein
,
F.
,
1971
, “
Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates—Part 1: Screw Coordinates
,”
ASME J. Eng. Ind.
,
93
(
1
), pp.
61
66
.
21.
Klein
,
F.
,
1939
,
Elementary Geometry From an Advanced Standpoint—Geometry
, 3rd ed.,
E. R.
Hedrick
and
C. A.
Noble
, eds.,
Dover
,
Mineola, NY
.
22.
He
,
Y.
,
Kalish
,
N.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2016
, “
Tolerance-Maps for Line-Profiles Formed by Intersecting Kinematically Transformed Primitive T-Map Elements
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021005
.
23.
Giordano
,
M.
, and
Duret
,
D.
,
1993
, “
Clearance Space and Deviation Space
,”
Third CIRP Seminar on Computer-Aided Tolerancing
, Cachan, France, pp.
179
196
.
24.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,”
Global Consistency of Tolerances
, Springer, Dordrecht, The Netherlands, Mar. 22–24, pp.
177
86
.
25.
Ostrovsky-Berman
,
Y.
, and
Joskowicz
,
L.
,
2005
, “
Tolerance Envelopes of Planar Mechanical Parts
,”
Comput.-Aided Des.
,
37
(
5
), pp.
531
544
.
26.
Teissandier
,
D.
,
2012
, “
Contribution à l'Analyse des Tolerances Géométriques d'un Système Mécanique par des Polytopes
,” Ph.D. habilitation, Université Bordeaux 1, Bordeaux, France.
27.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031005
.
28.
Arroyo-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Tolerance Analysis With Polytopes in HV Description
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041011
.
29.
Manning
,
H. P.
,
1914
,
Geometry of Four Dimensions
,
MacMillan
,
New York
.
30.
Apostol
,
T. M.
, and
Mnatsakanian
,
M. A.
,
2012
,
New Horizons in Geometry
,
Mathematical Association of America
,
Washington, DC
.
You do not currently have access to this content.