Abstract

A new mathematical model for representing the geometric variations of a planar surface is extended to include probabilistic representations for a 1D dimension of interest, which can be determined from multidimensional variations of the planar surface on a part. The model is compatible with the ASME/ANSI/ISO Standards for geometric tolerances. Central to the new model is a Tolerance-Map® (T-Map®) (Patent No. 6963824), a hypothetical volume of points that models the 3D variations in location and orientation of a feature, which can arise from tolerances on size, position, orientation, and form. The 3D variations of a planar surface are decomposed into manufacturing bias, i.e., toward certain regions of a Tolerance-Map, and into geometric bias that can be computed from the geometry of T-Maps. The geometric bias arises from the shape of the feature, the tolerance-zone, and the control used on the mating envelope. Influence of manufacturing bias on the frequency distribution of 1D dimension of interest is demonstrated with two examples: the multidimensional truncated Gaussian distribution and the uniform distribution. In this paper, form and orientation variations are incorporated as subsets in order to model the coupling between size and form variations, as permitted by the ASME Standard when the amounts of these variations differ. Two distributions for flatness, i.e., the uniform distribution and the Gaussian distribution that has been truncated symmetrically to six standard deviations, are used as examples to illustrate the influence of form on the dimension of interest. The influence of orientation (parallelism and perpendicularity) refinement on the frequency distribution for the dimension of interest is demonstrated. Although rectangular faces are utilized in this paper to illustrate the method, the same techniques may be applied to any convex plane-segment that serves as a target face.

1.
American National Standard ASME Y14.5M
, 1994,
Dimensioning and Tolerancing
,
ASME
,
New York
.
2.
American National Standard ASME Y14.5M
, 2009,
Dimensioning and Tolerancing
,
ASME
,
New York
.
3.
Zhang
,
H. C.
, 1997,
Advanced Tolerancing Techniques
,
Wiley
,
New York
.
4.
Davidson
,
J. K.
,
Mujezinovic
,
A.
, and
Shah
,
J. J.
, 2002, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
609
622
.
5.
Pasupathy
,
T. M. K.
,
Morse
,
E. P.
, and
Wilhelm
,
R. G.
, 2003, “
A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
3
, pp.
64
75
.
6.
Bhide
,
S.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2003, “
A New Mathematical Model for Geometric Tolerances as Applied to Axes
,” ASME Paper No. DETC2003/DAC-48736.
7.
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2002, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
216
(
1
), pp.
95
103
.
8.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2004, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
0161-8458,
126
(
3
), pp.
504
518
.
9.
Ameta
,
G.
,
Davidson
J. K.
, and
Shah
,
J. J.
, 2007, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
4
), pp.
347
359
.
10.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, 2010, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Tab-Slot Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
10
, p.
011005
.
11.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J.
, 2010, “
Influence of Form on Tolerance-Map-Generated Frequency Distributions for 1D Clearance in Design
,”
Precis. Eng.
0141-6359,
34
, pp.
22
27
.
12.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J. K.
, 2007, “
Navigating the Tolerance Analysis Maze
,”
Computer Aided Design and Applications
,
4
(
5
), pp.
705
718
.
13.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
, 2005, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
3
), pp.
247
256
.
14.
Hong
,
Y. S.
, and
Chang
,
T. -C.
, 2002, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
0020-7543,
40
(
11
), pp.
2425
2459
.
15.
Mansoor
,
E. M.
, 1963, “
The Application of Probability to Tolerances Used in Engineering Design
,”
Proc. Inst. Mech. Eng.
0020-3483,
178
, pp.
29
51
.
16.
Parkinson
,
D. B.
, 1982, “
The Application of Reliability Methods to Tolerancing
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
612
618
.
18.
Evans
,
D. H.
, 1967, “
An Application of Numerical Integration Techniques to Statistical Tolerancing
,”
Technometrics
0040-1706,
9
(
3
), pp.
441
456
.
19.
Taguchi
,
G.
,
Elsayed
,
E. A.
, and
Hsiang
,
T. C.
, 1989,
Quality Engineering in Production Systems
,
McGraw-Hill
,
New York
.
20.
Nigam
,
S. D.
, and
Turner
,
J. U.
, 1995, “
Review of Statistical Approaches to Tolerance Analysis
,”
Comput.-Aided Des.
0010-4485,
27
(
1
), pp.
6
15
.
21.
D’Errico
,
J. R.
, and
Zaino
,
N. A.
, Jr.
, 1988, “
Statistical Tolerancing Using a Modification of Taguchi’s Method
,”
Technometrics
0040-1706,
30
, pp.
397
405
.
22.
Kharoufeh
,
J. P.
, and
Chandra
,
M. J.
, 2002, “
Statistical Tolerance Analysis for Non-Normal or Correlated Normal Component Characteristics
,”
Int. J. Prod. Res.
0020-7543,
40
(
2
), pp.
337
352
.
23.
Seo
,
S. H.
, and
Kwak
,
M. B.
, 2002, “
Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information
,”
Int. J. Prod. Res.
0020-7543,
40
(
4
), pp.
931
944
.
24.
Varghese
,
P.
,
Braswell
,
R. N.
,
Wang
,
B.
, and
Zhang
,
C.
, 1996, “
Statistical Tolerance Analysis Using FRPDF and Numerical Convolution
,”
Comput.-Aided Des.
0010-4485,
28
(
9
), pp.
723
732
.
25.
Clément
,
A.
,
Desrochers
,
A.
, and
Riviére
,
A.
, 1991, “
Theory and Practice of 3D Tolerancing for Assembly
,”
Second CIRP Seminar on Computer Aided Tolerancing
, Pennsylvania.
26.
Clément
,
A.
,
Riviére
,
A.
, and
Temmerman
,
M.
, 1992,
Cotation Tridimensionelle des Systemes Mecaniques, Theorie et Pratique
,
Addison-Wesley
,
Boston
, in French.
27.
Reuleaux
,
F.
, 1875,
Theoretische Kinematik: Grundzüge einer Theorie des Maschinenwesens, Vieweg, Braunschweig
(
The Kinematics of Machinery
),
A. B. W.
Kennedy
, trans.,
Macmillan
,
London
(Reprinted (1963) with a new introduction by E. S. Ferguson, Dover, NY).
28.
Hunt
,
K. H.
, 1976, “
Geometry—The Key to Mechanical Movements
,”
Mech. Mach. Theory
0094-114X,
11
, pp.
79
89
.
29.
Desrochers
,
A.
, and
Rivière
,
A.
, 1997, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
13
, pp.
630
636
.
30.
Chase
,
K. W.
,
Gao
,
J.
, and
Magleby
,
S. P.
, 1995, “
General 2-D Tolerance Analysis of Mechanical Assemblies With Small Kinematic Adjustments
,”
J. Des. Manuf.
0962-4694,
5
(
4
), pp.
263
274
.
31.
Glancy
,
C. G.
, and
Chase
,
K. W.
, 1999, “
A Second-Order Method for Assembly Tolerance Analysis
,” ASME Paper No. DETC99/DAC-8707.
32.
Greenwood
,
W. H.
, and
Chase
,
K. W.
, 1990, “
Root Sum Squares Tolerance Analysis With Nonlinear Problems
,”
ASME J. Eng. Ind.
0022-0817,
112
, pp.
382
384
.
33.
Roy
,
U.
, and
Li
,
B.
, 1998, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects—I. Form Tolerances
,”
Comput.-Aided Des.
0010-4485,
30
(
2
), pp.
151
161
.
34.
Teissandier
,
D.
,
Couétard
,
Y.
, and
Gérard
,
A.
, 1999, “
A Computer Aided Tolerancing Model: Proportioned Assembly Clearance Volume
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
805
817
.
35.
Giordano
,
M.
,
Petit
,
J.
, and
Samper
,
S.
, 2003, “
Minimum Clearance for Tolerance Analysis of a Vacuum Pump
,”
Eighth CIRP Seminar on Computer Aided Tolerancing
, Charlotte, NC.
36.
Giordano
,
M.
,
Kataya
,
B.
, and
Pairel
,
E.
, 2003, “
Tolerance Analysis and Synthesis by Means of Clearance and Deviation Spaces
,”
Geometric Product Specification and Verification: Integration of Functionality
,
P.
Bourdet
and
L.
Mathieu
, eds.,
Kluwer Academic
,
Dordrecht, Netherlands
.
37.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
, 1994, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
0934-9839,
6
, pp.
191
210
.
38.
Lee
,
S.
, and
Yi
,
C.
, 1998, “
Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation
,”
Robotica
0263-5747,
16
, pp.
251
264
.
39.
Zou
,
Z.
, and
Morse
,
E.
, 2001, “
Statistical Tolerance Analysis Using GapSpace
,”
Seventh CIRP International Seminar on Computer Aided Tolerancing
, ENS de Cachan, France.
40.
Coxeter
,
H. S.
, 1969,
Introduction to Geometry
, 2nd ed.,
Wiley
,
New York
.
You do not currently have access to this content.