Abstract
The endothelium, a single layer of cells that lines all blood vessels, is the focus of intense interest in biomechanics because it is the principal recipient of hemodynamic shear stress. In arteries, shear stress has been demonstrated to regulate both acute vasoregulation and chronic adaptive vessel remodeling and is strongly implicated in the localization of atherosclerotic lesions. Thus, endothelial biomechanics and the associated mechanotransduction of shear stress are of great importance in vascular physiology and pathology. Here we discuss the important role of the cytoskeleton in a decentralization model of endothelial mechanotransduction. In particular, recent studies of four-dimensional cytoskeletal motion in living cells under external fluid mechanical forces are summarized together with new data on the spatial distribution of cytoskeletal strain. These quantitative studies strongly support the decentralized distribution of luminally imposed forces throughout the endo- thelial cell. © 2002 Biomedical Engineering Society.
PAC2002: 8717-d, 8717Aa, 8719Uv
Similar content being viewed by others
REFERENCES
Ai, Z., A. Fischer, D. C. Spray, A. M. Brown, and G. I. Fishman. Wnt–1 regulation of connexin43 in cardiac myocytes. J. Clin. Invest. 105:161–171, 2000.
Ali, M. H., N. S. Chandel, C. E. Mathieu, and P. T. Schumacker. A novel mechanism of mechanotransduction: Role of mitochondria as transducers of cyclic strain. FASEB J. 14:A689, 2000.
Ballestrem, C., B. Wehrle–Haller, and B. A. Imhof. Actin dynamics in living mammalian cells. J. Cell. Sci. 111:1649–1658, 1998.
Barakat, A. I., E. V. Leaver, P. A. Pappone, and P. F. Davies. A flow–activated chloride–selective membrane current in vascular endothelial cells. Circ. Res. 85:820–828, 1999.
Barbee, K. A., P. F. Davies, and R. Lal. Subcellular distribution of shear stress at the surface of flow aligned and nonaligned endothelial monolayers. Am. J. Physiol. 268:H1765–H1772, 1995.
Burridge, K., and M. Chrzanowska–Wodnicka. Focal adhesions, contractility, and signaling. Annu. Rev. Cell Dev. Biol. 12:463–518, 1996.
Burridge, K., K. Fath, T. Kelly, G. Nuckolls, and C. Turner. Focal adhesions: Transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4:487–525, 1988.
Carminati, J. L., and T. Stearns. Microtubules orient the mitotic spindle in yeast through dynein–dependent interactions with the cell cortex. J. Cell Biol. 138:629–641, 1997.
Chalfie, M. Green fluorescent protein. Photochem. Photobiol. 62:651–656, 1995.
Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. Green fluorescent protein as a marker for gene expression. Science 263:802–805, 1994.
Chen, K.–D., Y.–S. Li, M. Kim, S. Li, S. Yuan, S. Chien, and J. Y.–J. Shyy. Mechanotransduction in response to shear stress: Roles of receptor tyrosine kinases, integrins, and Shc. J. Biol. Chem. 274:18393–18400, 1999.
Choidas, A., A. Jungbluth, A. Sechi, J. Murphy, A. Ullrich, and G. Marriott. The suitability and application of a GFP–actin fusion protein for long–term imaging of the organization and dynamics of the cytoskeleton in mammalian cells. Eur. J. Cell Biol. 77:81–90, 1998.
Choquet, D., D. P. Felsenfeld, and M. P. Sheetz. Extracellular matrix rigidity causes strengthening of integrin–cytoskeleton linkages. Cell 88:39–48, 1997.
Cormack, B. Green fluorescent protein as a reporter of transcription and protein localization in fungi. Curr. Opin. Microbiol. 1:406–410, 1998.
Davies, P. F. Flow–mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.
Davies, P. F., K. A. Barbee, M. V. Volin, A. Robotewskyj, J. Chen, L. Joseph, M. L. Griem, M. N. Wernick, E. Jacobs, D. C. Polacek, N. DePaola, and A. I. Barakat. Spatial relationships in early signaling events of flow–mediated endothelial mechanotransduction. Annu. Rev. Physiol. 59:527–549, 1997.
Davies, P. F., A. Robotewskyj, and M. L. Griem. Quantitative studies of endothelial cell adhesion: Directional remodeling of focal adhesion sites in response to flow forces. J. Clin. Invest. 93:2031–2038, 1994.
Davies, P. F., and S. C. Tripathi. Mechanical stress mechanisms and the cell: An endothelial paradigm. Circ. Res. 72:239–245, 1993.
DePaola, N., P. F. Davies, W. F. Pritchard, Jr., L. Florez, N. Harbeck, and D. C. Polacek. Spatial and temporal regulation of gap junction connexin43 in vascular endothelial cells exposed to controlled disturbed flows in vitro. Proc. Natl. Acad. Sci. U.S.A. 96:3154–3159, 1999.
Dewey, Jr., C. F., S. R. Bussolari, M. A. Gimbrone, Jr., and P. F. Davies. The dynamic response of vascular endothelial cells to fluid shear stress. J. Biomech. Eng. 103:177–188, 1981.
Doyle, T., and D. Botstein. Movement of yeast cortical actin cytoskeleton visualized in vivo. Proc. Natl. Acad. Sci. U.S.A. 93:3886–3891, 1996.
Eckes, B., E. Colucci–Guyon, H. Smola, S. Nodder, C. Babinet, T. Krieg, and P. Martin. Impaired wound healing in embryonic and adult mice lacking vimentin. J. Cell. Sci. 113:2455–2462, 2000.
Eckes, B., D. Dogic, E. Colucci–Guyon, N. Wang, A. Maniotis, D. Ingber, A. Merckling, F. Langa, M. Aumailley, A. Delouvee, V. Koteliansky, C. Babinet, and T. Krieg. Impaired mechanical stability, migration and contractile capacity in vimentin–deficient fibroblasts. J. Cell. Sci. 111:1879–1907, 1998.
Errampalli, D., K. Leung, M. B. Cassidy, M. Kostrzynska, M. Blears, H. Lee, and J. T. Trevors. Applications of the green fluorescent protein as a molecular marker in environmental microorganisms. J. Microbiol. Methods 35:187–199, 1999.
Felsenfeld, D. P., D. Choquet, and M. P. Sheetz. Ligand binding regulates the directed movement of ß1 integrins on fibroblasts. Nature (London) 383:438–440, 1996.
Felsenfeld, D. P., P. L. Schwartzberg, A. Venegas, R. Tse, and M. P. Sheetz. Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nat. Cell Biol. 1:200–206, 1999.
Feron, O., F. Saldana, J. B. Michel, and T. Michel. The endothelial nitric–oxide synthase–caveolin regulatory cycle. J. Biol. Chem. 273:3125–3128, 1998.
Fischer, M., S. Kaech, D. Knutti, and A. Matus. Rapid actin–based plasticity in dendritic spines. Neuron 20:847–854, 1998.
Fujimoto, T., A. Miyawaki, and K. Mikoshiba. Inositol 1,4,5–trisphosphate receptor–like protein in plasmalemmal caveolae is linked to actin filaments. J. Cell. Sci. 108:7–15, 1995.
Fung, Y. C., and S. Q. Liu. Elementary mechanics of the endothelium of blood vessels. J. Biomech. Eng. 115:1–12, 1993.
Galbraith, C. G., R. Skalak, and S. Chien. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil. Cytoskeleton 40:317–330, 1998.
Garcia–Cardena, G., R. Fan, D. F. Stern, J. Liu, and W. C. Sessa. Endothelial nitric oxide synthase is regulated by tyrosine phosphorylation and interacts with caveolin–1. J. Biol. Chem. 271:27237–27240, 1996.
Garcia–Cardena, G., P. Martasek, B. S. Masters, P. M. Skidd, J. Couet, S. Li, M. P. Lisanti, and W. C. Sessa. Dissecting the interaction between nitric oxide synthase NOS) and caveolin. Functional significance of the NOS caveolin binding domain in vivo. J. Biol. Chem. 272:25437–25440, 1997.
Goldman, R. D., Y. H. Chou, C. Dessev, G. Dessev, J. Eriksson, A. Goldman, S. Khuon, R. Kohnken, M. Lowy, R. Miller, K. Murphy, P. Opal, O. Skalli, and K. Straube. Dynamic aspects of cytoskeletal and karyoskeletal intermediate filament systems during the cell cycle. Cold Spring Harbor Symp. Quant. Biol. 56:629–642, 1991.
Goodwin, P. C. Wide–field deconvolution vs. confocal microscopy of living cells. Scanning 18:144–145, 1996.
Grieder, N. C., M. de Cuevas, and A. C. Spradling. The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development (Cambridge, U.K.) 127:4253–4264, 2000.
Gubin, A. N., B. Reddy, J. M. Njoroge, and J. L. Miller. Long–term, stable expression of green fluorescent protein in mammalian cells. Biochem. Biophys. Res. Commun. 236:347–350, 1997.
Gudi, S. R., C. B. Clark, and J. A. Frangos. Fluid flow rapidly activates G proteins in human endothelial cells. Circ. Res. 79:834–839, 1996.
Gudi, S. R., J. P. Nolan, and J. A. Frangos. Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc. Natl. Acad. Sci. U.S.A. 95:2515–2519, 1998.
Guilak, F. Compression–induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 28:1529–1541, 1995.
Haidekker, M. A., N. L'Heureux, and J. A. Frangos. Fluid shear stress increases membrane fluidity in endothelial cells. Am. J. Physiol. 278:H1401–H1406, 2000.
Heidemann, S. R., S. Kaech, R. E. Buxbaum, and A. Matus. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J. Cell Biol. 145:109–122, 1999.
Helmke, B. P., R. D. Goldman, and P. F. Davies. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ. Res. 86:745–752, 2000.
Helmke, B. P., D. B. Thakker, R. D. Goldman, and P. F. Davies. Spatiotemporal analysis of flow–induced intermediate filament displacement in living endothelial cells. Biophys. J. 80:184–194, 2001.
Herrmann, H., and U. Aebi. Structure, assembly, and dynamics of intermediate filaments. Subcell Biochem. 31:319–362, 1998.
Hiraoka, Y., J. W. Sedat, and D. A. Agard. Determination of three–dimensional properties of a light microscope system: Partial confocal behavior in epifluorescence microscopy. Biophys. J. 57:325–333, 1990.
Ho, C.–L., J. L. Martys, A. Mikhailov, G. G. Gundersen, and R. K. H. Liem. Novel features of intermediate filament dynamics revealed by green fluroescent protein chimeras. J. Cell. Sci. 111:1767–1778, 1998.
Hoyer, J., R. Kohler, and A. Distler. Mechanosensitive Ca2+ oscillations and STOC activation in endothelial cells. FASEB J. 12:359–366, 1998.
Hynes, R. O. Integrins: Versatility, modulation, and signaling in cell adhesion. Cell 69:11–25, 1992.
Ingber, D. Integrins as mechanochemical transducers. Curr. Opin. Cell Biol. 3:841–848, 1991.
Ingber, D. Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59:575–599, 1997.
Inoue, N., S. Ramasamy, T. Fukai, R. M. Nerem, and D. G. Harrison. Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ. Res. 79:32–37, 1996.
Ishida, T., T. E. Peterson, N. L. Kovach, and B. C. Berk. MAP kinase activation by flow in endothelial cells. Role of ß1 integrins and tyrosine kinases. Circ. Res. 79:310–316, 1996.
Ishida, T., M. Takahashi, M. A. Corson, and B. C. Berk. Fluid shear stress–mediated signal transduction: How do endothelial cells transduce mechanical force into biological responses? Ann. N.Y. Acad. Sci. 811:12–23, 1997.
Ishide, N., M. Miura, M. Sakurai, and T. Takishima. Initiation and development of calcium waves in rat myocytes. Am. J. Physiol. 263:H327–H332, 1992.
Ishide, N., T. Urayama, K. Inoue, T. Komaru, and T. Takishima. Propagation and collision characteristics of calcium waves in rat myocytes. Am. J. Physiol. 259:H940–H950, 1990.
Jacobs,E. R., C. Cheliakine, D. Gebremedhin, P. F. Davies, and D. R. Harder. Shear activated channels in cell attached patches of vascular endothelial cells. Pflugers Arch.: Eur. J. Physiol. 431:129–131, 1995.
Janmey, P. A. The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiol. Rev. 78:763–781, 1998.
Janmey, P. A., U. Euteneuer, P. Traub, and M. Schliwa. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113:155–160, 1991.
Janmey, P. A., U. Euteneuer, P. Traub, and M. Schliwa. Viscoelasticity of intermediate filament networks. Subcellular Biochemistry 31:381–397, 1998.
Ju, H., R. Zou, V. J. Venema, and R. C. Venema. Direct interaction of endothelial nitric–oxide synthase and caveolin–1 inhibits synthase activity. J. Biol. Chem. 272:18522–18525, 1997.
Kam, Z., M. O. Jones, H. Chen, D. A. Agard, and J. W. Sedat. Design and construction of an optimal illumination system for quantitative wide–field multi–dimensional microscopy. Bioimaging 1:71–81, 1993.
Kano, Y., K. Katoh, M. Masuda, and K. Fujiwara. Macromolecular composition of stress fiber–plasma membrane attachment sites in endothelial cells in situ. Circ. Res. 79:1000–1006, 1996.
Kimble, M., M. C. Kuzmiak, K. N. McGovern, and E. L. de Hostos. Microtubule organization and the effects of GFP–tubulin expression in Dictyostelium discoideum. Cell Motil. Cytoskeleton 47:48–62, 2000.
Ko, K., P. Arora, W. Lee, and C. McCulloch. Biochemical and functional characterization of intercellular adhesion and gap junctions in fibroblasts. Am. J. Physiol. 279:C147–C157, 2000.
Kohler, R., G. Schonfelder, H. Hopp, A. Distler, and J. Hoyer. Stretch–activated cation channel in human umbilical vein endothelium in normal pregnancy and in preeclampsia. J. Hypertens. 16:1149–1156, 1998.
Kowalczyk, A. P., P. Navarro, E. Dejana, E. A. Bornslaeger, K. J. Green, D. S. Kopp, and J. E. Borgwardt. VE–cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: A pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J. Cell. Sci. 111:3045–3057, 1998.
Levesque, M. J., and R. M. Nerem. The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107:341–347, 1985.
Li, S., B. P. Chen, N. Azuma, Y. L. Ju, S. Z. Wu, B. E. Sumpio, J. Y.–J. Shyy, and S. Chien. Distinct roles for the small GTPases Cdc42 and Rho in endothelial responses to shear stress. J. Clin. Invest. 103:1141–1150, 1999.
Li, S., M. Kim, Y. L. Hu, S. Jalali, D. D. Schlaepfer, T. Hunter, S. Chien, and J. Y.–J. Shyy. Fluid shear stress activation of focal adhesion kinase. Linking to mitogen–activated protein kinases. J. Biol. Chem. 272:30455–30462, 1997.
Ludin, B., and A. Matus. GFP illuminates the cytoskeleton. Trends Cell Biol. 8:72–77, 1998.
Malek, A. M., and S. Izumo. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J. Cell. Sci. 109:713–726, 1996.
Mallavarapu, A., K. Sawin, and T. Mitchison. A switch in microtubule dynamics at the onset of anaphase B in the mitotic spindle of Schizosaccharomyces pombe. Curr. Biol. 9:4123–1426, 1999.
Maniotis, A. J., C. S. Chen, and D. E. Ingber. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc. Natl. Acad. Sci. U.S.A. 94:849–854, 1997.
Marchenko, S. M., and S. O. Sage. A novel mechanosensitive cationic channel from the endothelium of rat aorta. J. Physiol. (London) 498:419–425, 1997.
Margolin, W. Green fluorescent protein as a reporter for macromolecular localization in bacterial cells. Methods: A Companion to Methods in Enzymology 20:62–72, 2000.
Martys, J. L., C.–L. Ho, R. K. H. Liem, and G. G. Gundersen. Intermediate filaments in motion: observations of intermediate filaments in cells using green fluorescent proteinvimentin. Mol. Biol. Cell 10:1289–1295, 1999.
Nakache, M., and H. E. Gaub. Hydrodynamic hyperpolarization of endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 85:1841–1843, 1988.
Nerem, R. M., M. J. Levesque, and J. F. Cornhill. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–176, 1981.
Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady–state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504–514, 1999.
Ochoa, G. C., V. I. Slepnev, L. Neff, N. Ringstad, K. Takei, L. Daniell, W. Kim, H. Cao, M. McNiven, R. Baron, and P. De Camilli. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150:377–389, 2000.
Olesen, S.–P., D. E. Clapham, and P. F. Davies. Hemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature (London) 331:168–170, 1988.
Paemeleire, K., A. de Hemptinne, and L. Leybaert. Chemically, mechanically, and hyperosmolarity–induced calcium responses of rat cortical capillary endothelial cells in culture. Exp. Brain Res. 126:473–481, 1999.
Prahlad, V., M. Yoon, R. D. Moir, R. D. Vale, and R. D. Goldman. Rapid movements of vimentin on microtubule tracks: Kinesin–dependent assembly of intermediate filament networks. J. Cell Biol. 143:159–170, 1998.
Prasher, D. C., V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier. Primary structure of the Aequorea Victoria green–fluorescent protein. Gene 111:229–233, 1992.
Pries, A. R., T. W. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflugers Arch.: Eur. J. Physiol. 440:653–666, 2000.
Ren, X. D., W. B. Kiosses, and M. A. Schwartz. Regulation of the small GTP–binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18:578–585, 1999.
Ren, X. D., W. B. Kiosses, D. J. Sieg, C. A. Otey, D. D. Schlaepfer, and M. A. Schwartz. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell. Sci. 113:3673–3678, 2000.
Resnick, N., and M. A. Gimbrone, Jr. Hemodynamic forces are complex regulators of endothelial gene expression. FASEB J. 9:874–882, 1995.
Rizzo, V., A. Sung, P. Oh, and J. E. Schnitzer. Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. J. Biol. Chem. 273:26323–26329, 1998.
Robbins, J. R., A. I. Barth, H. Marquis, E. L. de Hostos, W. J. Nelson, and J. A. Theriot. Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell. Biol. 146:1333–1350, 1999.
Schiffers, P. M., D. Henrion, C. M. Boulanger, E. Colucci–Guyon, F. Langa–Vuves, H. van Essen, G. E. Fazzi, B. I. Levy, and J. G. De Mey. Altered flow–induced arterial remodeling in vimentin–deficient mice. J. Arterioscler., Thromb., Vasc. Biol. 20:611–616, 2000.
Schliwa, M., and J. van Blerkom. Structural interaction of cytoskeletal components. J. Cell Biol. 90:222–235, 1981.
Shah, J. V., L. Z. Wang, P. Traub, and P. A. Janmey. Interaction of vimentin with actin and phospholipids. Biol. Bull. 194:402–405, 1998.
Steinert, P. M., Y. H. Chou, V. Prahlad, D. A. Parry, L. N. Marekov, K. C. Wu, S. I. Jang, and R. D. Goldman. A high molecular weight intermediate filament–associated protein in BHK–21 cells is nestin, a type VI intermediate filament protein. J. Biol. Chem. 274:9881–9890, 1999.
Straub, S. V., D. R. Giovannucci, and D. I. Yule. Calcium wave propagation in pancreatic acinar cells: Functional interaction of inositol 1,4,5–trisphosphate receptors, ryanodine receptors, and mitochondria. J. Gen. Physiol. 116:547–560, 2000.
Svitkina, T. M., A. B. Verkhovsky, and G. G. Borisy. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 135:991–1007, 1996.
Takahashi, M., and B. C. Berk. Mitogen–activated protein kinase (ERK1/2) activation by shear stress and adhesion in endothelial cells. Essential role for a herbimycin–sensitive kinase. J. Clin. Invest. 98:2623–2631, 1996.
Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67:509–544, 1998.
Verkhusha, V. V., S. Tsukita, and H. Oda. Actin dynamics in lamellipodia of migrating border cells in the Drosophila ovary revealed by a GFP–actin fusion protein. FEBS Lett. 445:395–401, 1999.
Vikstrom, K. L., S.–S. Lim, R. D. Goldman, and G. G. Borisy. Steady state dynamics of intermediate filaments networks. J. Cell Biol. 118:121–129, 1992.
Wang, N. Mechanical interactions among cytoskeletal filaments. Hypertension 32:162–165, 1998.
Wang, N., J. P. Butler, and D. E. Ingber. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127, 1993.
Wang, S. S., and S. H. Thompson. Local positive feedback by calcium in the propagation of intracellular calcium waves. Biophys. J. 69:1683–1697, 1995.
Wei, Z., K. Costa, A. B. Al–Mehdi, C. Dodia, V. Muzykantov, and A. B. Fisher. Simulated ischemia in flow–adapted endothelial cells leads to generation of reactive oxygen species and cell signaling. Circ. Res. 85:682–689, 1999.
Wernick, M. N., M. L. Griem, A. Robotewskyj, and P. F. Davies. Image analysis of the dynamic changes of adhesion sites in endothelial cells subjected to directional flow in vitro. J. Vasc. Invest. 4:15–23, 1998.
Westphal, M. N., A. Jungbluth, M. Heidecker, B. Muhlbauer, C. Heizer, J. M. Schwartz, G. Marriott, and G. Gerisch. Microfilament dynamics during cell movement and chemotaxis monitored using a GFP–actin fusion protein. Curr. Biol. 7:176–183, 1997.
Wu, Z., K. Wong, M. Glogauer, R. P. Ellen, and C. A. McCulloch. Regulation of stretch–activated intracellular calcium transients by actin filaments. Biochem. Biophys. Res. Commun. 261:419–425, 1999.
Yoon, M., R. D. Moir, V. Prahlad, and R. D. Goldman. Motile properties of vimentin intermediate filament networks in living cells. J. Cell Biol. 143:147–157, 1998.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Helmke, B.P., Davies, P.F. The Cytoskeleton Under External Fluid Mechanical Forces: Hemodynamic Forces Acting on the Endothelium. Annals of Biomedical Engineering 30, 284–296 (2002). https://doi.org/10.1114/1.1467926
Issue Date:
DOI: https://doi.org/10.1114/1.1467926