Published online by Cambridge University Press: 01 February 2010
A generalisation of Milner's ‘LCF approach’ is described. This allows algorithms based on binary decision diagrams (BDDs) to be programmed as derived proof rules in a calculus of representation judgements. The derivation of representation judgements becomes an LCF-style proof by defining an abstract type for judgements analogous to the LCF type of theorems. The primitive inference rules for representation judgements correspond to the operations provided by an efficient BDD package coded in C (BuDDy). Proof can combine traditional inference with steps inferring representation judgements. The resulting system provides a platform to support a tight and principled integration of theorem proving and model checking. The methods are illustrated by using them to solve all instances of a generalised Missionaries and Cannibals problem.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.