Genetic and evolutionary biometrics: Exploring value preference space for hybrid feature weighting and selection
International Journal of Intelligent Computing and Cybernetics
ISSN: 1756-378X
Article publication date: 22 March 2013
Abstract
Purpose
The aim of this paper is to explore the value preference space associated with the optimization and generalization performance of GEFeWSML.
Design/methodology/approach
In this paper, the authors modified the evaluation function utilized by GEFeWSML such that the weights assigned to each objective (i.e. error reduction and feature reduction) were varied. For each set of weights, GEFeWSML was used to evolve FMs for the face, periocular, and face + periocular templates. The best performing FMs on the training set (FMtss) and the best performing FMs on the validation set (FM*s) were then applied to the test set in order to evaluate how well they generalized to the unseen subjects.
Findings
By varying the weights assigned to each of the objectives, the authors were able to suggest values that would result in the best optimization and generalization performances for facial, periocular, and face + periocular recognition. GEFeWSML using these suggested values outperformed the previously reported GEFeWSML results, using significantly fewer features while achieving the same recognition accuracies statistically.
Originality/value
In this paper, the authors investigate the relative weighting of each objective using a value preference structure and suggest the best weights to be used for each biometric modality tested.
Keywords
Citation
Alford, A., Adams, J., Shelton, J., Dozier, G., Bryant, K. and Kelly, J. (2013), "Genetic and evolutionary biometrics: Exploring value preference space for hybrid feature weighting and selection", International Journal of Intelligent Computing and Cybernetics, Vol. 6 No. 1, pp. 4-20. https://doi.org/10.1108/17563781311301490
Publisher
:Emerald Group Publishing Limited
Copyright © 2013, Emerald Group Publishing Limited