Relative class number of imaginary Abelian fields of prime conductor below 10000
HTML articles powered by AMS MathViewer
- by M. A. Shokrollahi PDF
- Math. Comp. 68 (1999), 1717-1728 Request permission
Abstract:
In this paper we compute the relative class number of all imaginary Abelian fields of prime conductor below 10000. Our approach is based on a novel multiple evaluation technique, and, assuming the ERH, it has a running time of $O(p^2\log ^2(p)\log \log (p))$, where $p$ is the conductor of the field.References
- C. Batut, D. Bernardi, H. Cohen, and M. Olivier, User’s Guide to PARI-GP, Université Bordeaux, 351 Cours de la Libération, May 1995. Obtainable via anonymous ftp from megrez.math.u-bordeaux.fr.
- L. I. Bluestein, A linear filtering approach to the computation of the discrete Fourier transform, IEEE Trans. Electroacoustics 18 (1970), 451–455.
- A. Borodin and R. Moenck, Fast modular transforms, J. Comput. System Sci. 8 (1974), 366–386. MR 371144, DOI 10.1016/S0022-0000(74)80029-2
- J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä and M. A. Shokrollahi, Irregular primes below 8 million, J. Symbolic Comput. (submitted)
- P. Bürgisser, M. Clausen, and M. A. Shokrollahi, Algebraic complexity theory, Springer-Verlag, 1997.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- B. Buchberger, G. E. Collins, R. Loos, and R. Albrecht (eds.), Computer algebra, 2nd ed., Springer-Verlag, Vienna, 1983. Symbolic and algebraic computation. MR 728960, DOI 10.1007/978-3-7091-7551-4
- Daniel Davis, Computing the number of totally positive circular units which are squares, J. Number Theory 10 (1978), no. 1, 1–9. MR 476695, DOI 10.1016/0022-314X(78)90002-1
- Dennis R. Estes, On the parity of the class number of the field of $q$th roots of unity, Rocky Mountain J. Math. 19 (1989), no. 3, 675–682. Quadratic forms and real algebraic geometry (Corvallis, OR, 1986). MR 1043240, DOI 10.1216/RMJ-1989-19-3-675
- Gilbert Fung, Andrew Granville, and Hugh C. Williams, Computation of the first factor of the class number of cyclotomic fields, J. Number Theory 42 (1992), no. 3, 297–312. MR 1189508, DOI 10.1016/0022-314X(92)90095-7
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Vijay Jha, Faster computation of the first factor of the class number of $\textbf {Q}(\zeta _p)$, Math. Comp. 64 (1995), no. 212, 1705–1710. MR 1277768, DOI 10.1090/S0025-5718-1995-1277768-4
- S. Bergmann and J. Marcinkiewicz, Sur les fonctions analytiques de deux variables complexes, Fund. Math. 33 (1939), 75–94 (French). MR 57, DOI 10.4064/fm-33-1-75-94
- C. G. Latimer, On the units in a cyclic field, Amer. J. Math. 56 (1934), 69–74.
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- H. W. Lenstra, Private communication, 1997.
- Timo Lepistö, On the growth of the first factor of the class number of the prime cyclotomic field, Ann. Acad. Sci. Fenn. Ser. A. I. 577 (1974), 21. MR 347772
- S. Louboutin, Computation of relative class numbers of imaginary abelian fields, Expositiones Math. (to appear).
- Tauno Metsänkylä, Some divisibility results for the cyclotomic class number, Tatra Mt. Math. Publ. 11 (1997), 59–68. Number theory (Liptovský Ján, 1995). MR 1475505
- Leo F. Epstein, A function related to the series for $e^{e^x}$, J. Math. Phys. Mass. Inst. Tech. 18 (1939), 153–173. MR 58, DOI 10.1002/sapm1939181153
- Morris Newman, A table of the first factor for prime cyclotomic fields, Math. Comp. 24 (1970), 215–219. MR 257029, DOI 10.1090/S0025-5718-1970-0257029-5
- A. M. Odlyzko, On conductors and discriminants, Algebraic number fields: $L$-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) Academic Press, London, 1977, pp. 377–407. MR 0453701
- Journées Arithmétiques de Luminy, Société Mathématique de France, Paris, 1979 (French). Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, June 20–24, 1978; Astérisque No. 61 (1979) (1979). MR 556662
- Seppo Pajunen, Computations on the growth of the first factor for prime cyclotomic fields, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976), no. 1, 85–87. MR 401706, DOI 10.1007/bf01940781
- D. Reischert, Private communication, 1995.
- A. Schönhage, Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Informat. 7 (1976/77), no. 4, 395–398. MR 0436663, DOI 10.1007/bf00289470
- Arnold Schönhage, Asymptotically fast algorithms for the numerical multiplication and division of polynomials with complex coefficients, Computer algebra (Marseille, 1982) Lecture Notes in Comput. Sci., vol. 144, Springer, Berlin-New York, 1982, pp. 3–15. MR 680048
- Arnold Schönhage, Andreas F. W. Grotefeld, and Ekkehart Vetter, Fast algorithms, Bibliographisches Institut, Mannheim, 1994. A multitape Turing machine implementation. MR 1290996
- A. Schönhage and V. Strassen, Schnelle Multiplikation großer Zahlen, Computing (Arch. Elektion. Rechnung) 7 (1971), 281–292.
- M. A. Shokrollahi, Computation of irregular primes up to eight million, Technical Report TR-96-002, International Computer Science Institute, 1995.
- M. A. Shokrollahi, Stickelberger codes, Designs, Codes and Cryptography, 9 (1996), 1–11.
- Peter Stevenhagen, Class number parity for the $p$th cyclotomic field, Math. Comp. 63 (1994), no. 208, 773–784. MR 1242060, DOI 10.1090/S0025-5718-1994-1242060-X
- Saunders MacLane, Steinitz field towers for modular fields, Trans. Amer. Math. Soc. 46 (1939), 23–45. MR 17, DOI 10.1090/S0002-9947-1939-0000017-3
- Guntram Schrutka von Rechtenstamm, Tabelle der (Relativ)-Klassenzahlen der Kreiskörper, deren $\varphi$-Funktion des Wurzelexponenten (Grad) nicht grösser als 256 ist, Abh. Deutsch. Akad. Wiss. Berlin Kl. Math. Phys. Tech. 1964 (1964), no. 2, 64 (German). MR 167646
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- K. Yoshino and M. Hirabayashi, On the relative class number of imaginary abelian number field. I, II Mem. Coll. Liberal Arts, Kanazawa Medical Univ., 9 (1981), 5–53; 10 (1982), 33–81.
Additional Information
- M. A. Shokrollahi
- Affiliation: Bell Labs 2C-353, Lucent Technologies, 700 Mountain Avenue, Murray Hill, New Jersey 07974-0636
- Email: amin@research.bell-labs.com
- Received by editor(s): November 17, 1997
- Published electronically: May 24, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 1717-1728
- MSC (1991): Primary 11Y40, 11R18, 11R29
- DOI: https://doi.org/10.1090/S0025-5718-99-01139-4
- MathSciNet review: 1653986