On sums of seven cubes
HTML articles powered by AMS MathViewer
- by F. Bertault, O. Ramaré and P. Zimmermann PDF
- Math. Comp. 68 (1999), 1303-1310 Request permission
Abstract:
We show that every integer between 1290741 and $3.375\times 10^{12}$ is a sum of 5 nonnegative cubes, from which we deduce that every integer which is a cubic residue modulo 9 and an invertible cubic residue modulo 37 is a sum of 7 nonnegative cubes.References
- W.S. Baer “Über die Zerlegung der ganzen Zahlen in sieben Kuben”, Math. Ann. (1913) Vol 74, pp 511-515.
- Jan Bohman and Carl-Erik Fröberg, Numerical investigation of Waring’s problem for cubes, BIT 21 (1981), no. 1, 118–122. MR 616706, DOI 10.1007/BF01934077
- J.M. Deshouillers, F. Hennecart and B. Landreau, private communication.
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- L. E. Dickson “Theory of numbers”, Vol II, Chelsea Publishing Company (1971).
- G. H. Hardy and J.E. Littlewood “Some problems of “Partitio Numerorum” IV. The singular series in Waring’s Problem and the value of the number $G(k)$”, Math. Zeitschrift (1922) Vol 12, pp 161–188.
- A. J. Kempner “Über das Waringsche Problem und einige Verallgemeinerungen” Diss. Göttingen, 1912. Extract in Math. Annalen, (1912), Vol 72, pp 387.
- Bernard Landreau, Étude probabiliste des sommes de $s$ puissances $s$-ièmes, Compositio Math. 99 (1995), no. 1, 1–31 (French, with English and French summaries). MR 1352566
- Kevin S. McCurley, An effective seven cube theorem, J. Number Theory 19 (1984), no. 2, 176–183. MR 762766, DOI 10.1016/0022-314X(84)90100-8
- Olivier Ramaré and Robert Rumely, Primes in arithmetic progressions, Math. Comp. 65 (1996), no. 213, 397–425. MR 1320898, DOI 10.1090/S0025-5718-96-00669-2
- F. Romani, Computations concerning Waring’s problem for cubes, Calcolo 19 (1982), no. 4, 415–431. MR 728445, DOI 10.1007/BF02575769
- R. C. Vaughan, On Waring’s problem for cubes, J. Reine Angew. Math. 365 (1986), 122–170. MR 826156, DOI 10.1515/crll.1986.365.122
- R. C. Vaughan, A new iterative method in Waring’s problem, Acta Math. 162 (1989), no. 1-2, 1–71. MR 981199, DOI 10.1007/BF02392834
- R. C. Vaughan, On Waring’s problem for cubes. II, J. London Math. Soc. (2) 39 (1989), no. 2, 205–218. MR 991656, DOI 10.1112/jlms/s2-39.2.205
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
Additional Information
- F. Bertault
- Affiliation: Département de mathématiques, Université de Lille I, 59 655 Villeneuve d’Ascq, France
- Email: Francois.Bertault@loria.fr
- O. Ramaré
- Affiliation: LORIA, BP 101, 54600 Villers-lès-Nancy Cedex, France
- MR Author ID: 360330
- Email: ramare@gat.univ-lille1.fr
- P. Zimmermann
- MR Author ID: 273776
- Email: Paul.Zimmermann@loria.fr
- Received by editor(s): November 4, 1996
- Received by editor(s) in revised form: October 28, 1997
- Published electronically: February 11, 1999
- © Copyright 1999 American Mathematical Society
- Journal: Math. Comp. 68 (1999), 1303-1310
- MSC (1991): Primary 11P05, 11Y50; Secondary 11B13, 11D25, 11D72
- DOI: https://doi.org/10.1090/S0025-5718-99-01071-6
- MathSciNet review: 1642805