Elliptic curve cryptosystems
HTML articles powered by AMS MathViewer
- by Neal Koblitz PDF
- Math. Comp. 48 (1987), 203-209 Request permission
Abstract:
We discuss analogs based on elliptic curves over finite fields of public key cryptosystems which use the multiplicative group of a finite field. These elliptic curve cryptosystems may be more secure, because the analog of the discrete logarithm problem on elliptic curves is likely to be harder than the classical discrete logarithm problem, especially over ${\text {GF}}({2^n})$. We discuss the question of primitive points on an elliptic curve modulo p, and give a theorem on nonsmoothness of the order of the cyclic subgroup generated by a global point.References
- Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory IT-22 (1976), no. 6, 644–654. MR 437208, DOI 10.1109/tit.1976.1055638
- Taher ElGamal, A public key cryptosystem and a signature scheme based on discrete logarithms, IEEE Trans. Inform. Theory 31 (1985), no. 4, 469–472. MR 798552, DOI 10.1109/TIT.1985.1057074
- Rajiv Gupta and M. Ram Murty, Primitive points on elliptic curves, Compositio Math. 58 (1986), no. 1, 13–44. MR 834046
- Neal Koblitz, Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, vol. 97, Springer-Verlag, New York, 1984. MR 766911, DOI 10.1007/978-1-4684-0255-1
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817
- Emil Artin, The collected papers of Emil Artin, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. Edited by Serge Lang and John T. Tate. MR 0176888
- S. Lang and H. Trotter, Primitive points on elliptic curves, Bull. Amer. Math. Soc. 83 (1977), no. 2, 289–292. MR 427273, DOI 10.1090/S0002-9904-1977-14310-3 H. W. Lenstra, Jr., "Factoring integers with elliptic curves." (Preprint.) V. S. Miller, "Use of elliptic curves in cryptography," Abstracts for Crypto ’85.
- M. Ram Murty, On Artin’s conjecture, J. Number Theory 16 (1983), no. 2, 147–168. MR 698163, DOI 10.1016/0022-314X(83)90039-2
- A. M. Odlyzko, Discrete logarithms in finite fields and their cryptographic significance, Advances in cryptology (Paris, 1984) Lecture Notes in Comput. Sci., vol. 209, Springer, Berlin, 1985, pp. 224–314. MR 825593, DOI 10.1007/3-540-39757-4_{2}0
- René Schoof, Elliptic curves over finite fields and the computation of square roots mod $p$, Math. Comp. 44 (1985), no. 170, 483–494. MR 777280, DOI 10.1090/S0025-5718-1985-0777280-6 J.-P. Serre, Resumé des Cours de l’Année Scolaire, Collège de France, 1977-1978.
- Daniel Shanks, Solved and unsolved problems in number theory, 3rd ed., Chelsea Publishing Co., New York, 1985. MR 798284 H. Trotter, personal correspondence and unpublished tables, October 29, 1985. P. K. S. Wah & M. Z. Wang, Realization and Application of the Massey-Omura Lock, Proc. Internat. Zurich Seminar, March 6-8, 1984, pp. 175-182.
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 48 (1987), 203-209
- MSC: Primary 94A60; Secondary 11T71, 11Y16, 68P25
- DOI: https://doi.org/10.1090/S0025-5718-1987-0866109-5
- MathSciNet review: 866109