$L^p$ Bernstein estimates and approximation by spherical basis functions
HTML articles powered by AMS MathViewer
- by H. N. Mhaskar, F. J. Narcowich, J. Prestin and J. D. Ward;
- Math. Comp. 79 (2010), 1647-1679
- DOI: https://doi.org/10.1090/S0025-5718-09-02322-9
- Published electronically: December 2, 2009
- PDF | Request permission
Abstract:
The purpose of this paper is to establish $L^p$ error estimates, a Bernstein inequality, and inverse theorems for approximation by a space comprising spherical basis functions located at scattered sites on the unit $n$-sphere. In particular, the Bernstein inequality estimates $L^p$ Bessel-potential Sobolev norms of functions in this space in terms of the minimal separation and the $L^p$ norm of the function itself. An important step in its proof involves measuring the $L^p$ stability of functions in the approximating space in terms of the $\ell ^p$ norm of the coefficients involved. As an application of the Bernstein inequality, we derive inverse theorems for SBF approximation in the $L^P$ norm. Finally, we give a new characterization of Besov spaces on the $n$-sphere in terms of spaces of SBFs.References
- Feng Dai, Characterizations of function spaces on the sphere using frames, Trans. Amer. Math. Soc. 359 (2007), no. 2, 567–589. MR 2255186, DOI 10.1090/S0002-9947-06-04030-X
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 117523
- W. Freeden, T. Gervens, and M. Schreiner, Constructive approximation on the sphere, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. With applications to geomathematics. MR 1694466
- Willi Freeden and Volker Michel, Multiscale potential theory, Applied and Numerical Harmonic Analysis, Birkhäuser Boston, Inc., Boston, MA, 2004. With applications to geoscience. MR 2090018, DOI 10.1007/978-1-4612-2048-0
- Willi Freeden, Michael Schreiner, and Richard Franke, A survey on spherical spline approximation, Surveys Math. Indust. 7 (1997), no. 1, 29–85. MR 1470453
- Lars Hörmander, The analysis of linear partial differential operators. III, Classics in Mathematics, Springer, Berlin, 2007. Pseudo-differential operators; Reprint of the 1994 edition. MR 2304165, DOI 10.1007/978-3-540-49938-1
- A. I. Kamzolov, The best approximation of classes of functions $W^{\alpha }_{p}\,(S^{n})$ by polynomials in spherical harmonics, Mat. Zametki 32 (1982), no. 3, 285–293, 425 (Russian). MR 677597
- Q. T. Le Gia and H. N. Mhaskar, Polynomial operators and local approximation of solutions of pseudo-differential equations on the sphere, Numer. Math. 103 (2006), no. 2, 299–322. MR 2222812, DOI 10.1007/s00211-006-0676-z
- H. N. Mhaskar, A Markov-Bernstein inequality for Gaussian networks, Trends and applications in constructive approximation, Internat. Ser. Numer. Math., vol. 151, Birkhäuser, Basel, 2005, pp. 165–180. MR 2147576, DOI 10.1007/3-7643-7356-3_{1}2
- H. N. Mhaskar, On the representation of smooth functions on the sphere using finitely many bits, Appl. Comput. Harmon. Anal. 18 (2005), no. 3, 215–233. MR 2131286, DOI 10.1016/j.acha.2004.11.004
- H. N. Mhaskar, Weighted quadrature formulas and approximation by zonal function networks on the sphere, J. Complexity 22 (2006), no. 3, 348–370. MR 2229898, DOI 10.1016/j.jco.2005.10.003
- H. N. Mhaskar, F. J. Narcowich, J. Prestin, and J. D. Ward, Polynomial frames on the sphere, Adv. Comput. Math. 13 (2000), no. 4, 387–403. MR 1826335, DOI 10.1023/A:1016639802349
- H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Approximation properties of zonal function networks using scattered data on the sphere, Adv. Comput. Math. 11 (1999), no. 2-3, 121–137. Radial basis functions and their applications. MR 1731693, DOI 10.1023/A:1018967708053
- Mhaskar, H. N., Narcowich, F. J., and Ward, J. D. Corrigendum to spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp. 71 (2001), 453–454.
- H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature, Math. Comp. 70 (2001), no. 235, 1113–1130. MR 1710640, DOI 10.1090/S0025-5718-00-01240-0
- H. N. Mhaskar and J. Prestin, Polynomial frames: a fast tour, Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, pp. 287–318. MR 2126687
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 199449
- F. Narcowich, P. Petrushev, and J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, J. Funct. Anal. 238 (2006), no. 2, 530–564. MR 2253732, DOI 10.1016/j.jfa.2006.02.011
- F. J. Narcowich, P. Petrushev, and J. D. Ward, Localized tight frames on spheres, SIAM J. Math. Anal. 38 (2006), no. 2, 574–594. MR 2237162, DOI 10.1137/040614359
- Francis J. Narcowich, Xinping Sun, and Joseph D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27 (2007), no. 1, 107–124. MR 2317924, DOI 10.1007/s10444-005-7506-1
- Francis J. Narcowich, Xingping Sun, Joseph D. Ward, and Holger Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math. 7 (2007), no. 3, 369–390. MR 2335250, DOI 10.1007/s10208-005-0197-7
- Francis J. Narcowich and Joseph D. Ward, Scattered data interpolation on spheres: error estimates and locally supported basis functions, SIAM J. Math. Anal. 33 (2002), no. 6, 1393–1410. MR 1920637, DOI 10.1137/S0036141001395054
- F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 435697
- Pencho Petrushev and Yuan Xu, Localized polynomial frames on the ball, Constr. Approx. 27 (2008), no. 2, 121–148. MR 2336420, DOI 10.1007/s00365-007-0678-9
- Amos Ron and Xingping Sun, Strictly positive definite functions on spheres in Euclidean spaces, Math. Comp. 65 (1996), no. 216, 1513–1530. MR 1370856, DOI 10.1090/S0025-5718-96-00780-6
- Kh. P. Rustamov, On the equivalence of the $K$-functional and the modulus of smoothness of functions on a sphere, Mat. Zametki 52 (1992), no. 3, 123–129, 160 (Russian, with Russian summary); English transl., Math. Notes 52 (1992), no. 3-4, 965–970 (1993). MR 1194136, DOI 10.1007/BF01209618
- Robert Schaback and Holger Wendland, Inverse and saturation theorems for radial basis function interpolation, Math. Comp. 71 (2002), no. 238, 669–681. MR 1885620, DOI 10.1090/S0025-5718-01-01383-7
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- Robert S. Strichartz, Analysis of the Laplacian on the complete Riemannian manifold, J. Functional Analysis 52 (1983), no. 1, 48–79. MR 705991, DOI 10.1016/0022-1236(83)90090-3
- Gábor Szegő, Orthogonal polynomials, 4th ed., American Mathematical Society Colloquium Publications, Vol. XXIII, American Mathematical Society, Providence, RI, 1975. MR 372517
- Hans Triebel, Spaces of Besov-Hardy-Sobolev type on complete Riemannian manifolds, Ark. Mat. 24 (1986), no. 2, 299–337. MR 884191, DOI 10.1007/BF02384402
- Holger Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17, Cambridge University Press, Cambridge, 2005. MR 2131724
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- H. N. Mhaskar
- Affiliation: Department of Mathematics, California State University, Los Angeles, California 90032
- F. J. Narcowich
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 129435
- J. Prestin
- Affiliation: Institute of Mathematics, University of Lübeck, Wallstrasse 40, 23560, Lübeck, Germany
- J. D. Ward
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843
- MR Author ID: 180590
- Received by editor(s): October 15, 2008
- Received by editor(s) in revised form: July 8, 2009
- Published electronically: December 2, 2009
- Additional Notes: The research of the first author was supported by grant DMS-0605209 from the National Science Foundation and grant W911NF-04-1-0339 from the U.S. Army Research Office.
The research of the second author was supported by grants DMS-0504353 and DMS-0807033 from the National Science Foundation.
The research of the fourth was supported by grants DMS-0504353 and DMS-0807033 from the National Science Foundation. - © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 1647-1679
- MSC (2000): Primary 41A17, 41A27, 41A63, 42C15
- DOI: https://doi.org/10.1090/S0025-5718-09-02322-9
- MathSciNet review: 2630006