AMS :: Mathematics of Computation Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Algebraic solutions of Jacobi equations
HTML articles powered by AMS MathViewer

by S. C. Coutinho and Marcos da Silva Ferreira;
Math. Comp. 78 (2009), 2427-2433
DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
Published electronically: May 1, 2009

Abstract:

We propose an algorithm to compute exactly the algebraic solutions of Jacobi equations over the projective plane.
References
  • William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
  • Arjeh M. Cohen, Hans Cuypers, and Hans Sterk (eds.), Some tapas of computer algebra, Algorithms and Computation in Mathematics, vol. 4, Springer-Verlag, Berlin, 1999. MR 1679917, DOI 10.1007/978-3-662-03891-8
  • S. C. Coutinho, Indecomposable non-holonomic $\scr D$-modules in dimension 2, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 2, 341–355. MR 1998565, DOI 10.1017/S0013091501001018
  • S. C. Coutinho and L. Menasché Schechter, Algebraic solutions of holomorphic foliations: an algorithmic approach, J. Symbolic Comput. 41 (2006), no. 5, 603–618. MR 2209167, DOI 10.1016/j.jsc.2005.11.002
  • G. Darboux, Mémoire sur les équations différentielles algébriques du I$^{\mathrm {o}}$ ordre et du premier degré, Bull. des Sc. Math. (Mélanges) (1878), 60–96, 123–144, 151–200.
  • Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann; With 1 CD-ROM (Windows, Macintosh, and UNIX). MR 1930604, DOI 10.1007/978-3-662-04963-1
  • G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0.5. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
  • E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 10757
  • C. Jacobi, De Integratione Aequationes Differentiallis $(A+A’x+A''y)(xdy-ydx)-(B+B’x+B''y)dy+(C+C’x+C''y)dx)=0$, J. für die reine und angewandte Mathematik (1842), pp. 1–4, and Ges. Werke, vol. 4, pp. 256–262.
  • Camille Jordan, Cours d’analyse de l’École polytechnique. Tome III, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1991 (French). Équations différentielles. [Differential equations]; Reprint of the third (1915) edition. MR 1188188
  • J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979 (French). MR 537038, DOI 10.1007/BFb0063393
  • Harrison Tsai and Uli Walther, Computing homomorphisms between holonomic $D$-modules, J. Symbolic Comput. 32 (2001), no. 6, 597–617. Effective methods in rings of differential operators. MR 1866706, DOI 10.1006/jsco.2001.0485
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC (2000): 34M15, 68W30, 13P10
  • Retrieve articles in all journals with MSC (2000): 34M15, 68W30, 13P10
Bibliographic Information
  • S. C. Coutinho
  • Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
  • Email: collier@impa.br
  • Marcos da Silva Ferreira
  • Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
  • Email: marcossferreira@gmail.com
  • Received by editor(s): April 3, 2006
  • Received by editor(s) in revised form: April 23, 2008
  • Published electronically: May 1, 2009
  • Additional Notes: During the preparation of this paper the first author was partially supported by grants from CNPq and PRONEX(ALGA)
    The second author was partially supported by a scholarship from CNPq
  • © Copyright 2009 American Mathematical Society
  • Journal: Math. Comp. 78 (2009), 2427-2433
  • MSC (2000): Primary 34M15, 68W30; Secondary 13P10
  • DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
  • MathSciNet review: 2521295