Algebraic solutions of Jacobi equations
HTML articles powered by AMS MathViewer
- by S. C. Coutinho and Marcos da Silva Ferreira;
- Math. Comp. 78 (2009), 2427-2433
- DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
- Published electronically: May 1, 2009
- PDF | Request permission
Abstract:
We propose an algorithm to compute exactly the algebraic solutions of Jacobi equations over the projective plane.References
- William W. Adams and Philippe Loustaunau, An introduction to Gröbner bases, Graduate Studies in Mathematics, vol. 3, American Mathematical Society, Providence, RI, 1994. MR 1287608, DOI 10.1090/gsm/003
- Arjeh M. Cohen, Hans Cuypers, and Hans Sterk (eds.), Some tapas of computer algebra, Algorithms and Computation in Mathematics, vol. 4, Springer-Verlag, Berlin, 1999. MR 1679917, DOI 10.1007/978-3-662-03891-8
- S. C. Coutinho, Indecomposable non-holonomic $\scr D$-modules in dimension 2, Proc. Edinb. Math. Soc. (2) 46 (2003), no. 2, 341–355. MR 1998565, DOI 10.1017/S0013091501001018
- S. C. Coutinho and L. Menasché Schechter, Algebraic solutions of holomorphic foliations: an algorithmic approach, J. Symbolic Comput. 41 (2006), no. 5, 603–618. MR 2209167, DOI 10.1016/j.jsc.2005.11.002
- G. Darboux, Mémoire sur les équations différentielles algébriques du I$^{\mathrm {o}}$ ordre et du premier degré, Bull. des Sc. Math. (Mélanges) (1878), 60–96, 123–144, 151–200.
- Gert-Martin Greuel and Gerhard Pfister, A Singular introduction to commutative algebra, Springer-Verlag, Berlin, 2002. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann; With 1 CD-ROM (Windows, Macintosh, and UNIX). MR 1930604, DOI 10.1007/978-3-662-04963-1
- G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0.5. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra, University of Kaiserslautern (2001). http://www.singular.uni-kl.de.
- E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. MR 10757
- C. Jacobi, De Integratione Aequationes Differentiallis $(A+A’x+A''y)(xdy-ydx)-(B+B’x+B''y)dy+(C+C’x+C''y)dx)=0$, J. für die reine und angewandte Mathematik (1842), pp. 1–4, and Ges. Werke, vol. 4, pp. 256–262.
- Camille Jordan, Cours d’analyse de l’École polytechnique. Tome III, Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics], Éditions Jacques Gabay, Sceaux, 1991 (French). Équations différentielles. [Differential equations]; Reprint of the third (1915) edition. MR 1188188
- J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, vol. 708, Springer, Berlin, 1979 (French). MR 537038, DOI 10.1007/BFb0063393
- Harrison Tsai and Uli Walther, Computing homomorphisms between holonomic $D$-modules, J. Symbolic Comput. 32 (2001), no. 6, 597–617. Effective methods in rings of differential operators. MR 1866706, DOI 10.1006/jsco.2001.0485
Bibliographic Information
- S. C. Coutinho
- Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
- Email: collier@impa.br
- Marcos da Silva Ferreira
- Affiliation: Departamento de Ciência da Computação, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P.O. Box 68530, 21945-970 Rio de Janeiro, RJ, Brazil — and — Programa de Engenharia de Sistemas e Computação, COPPE, UFRJ, PO Box 68511, 21941-972, Rio de Janeiro, RJ, Brazil
- Email: marcossferreira@gmail.com
- Received by editor(s): April 3, 2006
- Received by editor(s) in revised form: April 23, 2008
- Published electronically: May 1, 2009
- Additional Notes: During the preparation of this paper the first author was partially supported by grants from CNPq and PRONEX(ALGA)
The second author was partially supported by a scholarship from CNPq - © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 2427-2433
- MSC (2000): Primary 34M15, 68W30; Secondary 13P10
- DOI: https://doi.org/10.1090/S0025-5718-09-02238-8
- MathSciNet review: 2521295