A posteriori error estimator and error control for contact problems
HTML articles powered by AMS MathViewer
- by Alexander Weiss and Barbara I. Wohlmuth;
- Math. Comp. 78 (2009), 1237-1267
- DOI: https://doi.org/10.1090/S0025-5718-09-02235-2
- Published electronically: February 20, 2009
- PDF | Request permission
Abstract:
In this paper, we consider two error estimators for one-body contact problems. The first error estimator is defined in terms of $H(\text {div})$-conforming stress approximations and equilibrated fluxes while the second is a standard edge-based residual error estimator without any modification with respect to the contact. We show reliability and efficiency for both estimators. Moreover, the error is bounded by the first estimator with a constant one plus a higher order data oscillation term plus a term arising from the contact that is shown numerically to be of higher order. The second estimator is used in a control-based AFEM refinement strategy, and the decay of the error in the energy is shown. Several numerical tests demonstrate the performance of both estimators.References
- Mark Ainsworth, Robust a posteriori error estimation for nonconforming finite element approximation, SIAM J. Numer. Anal. 42 (2005), no. 6, 2320–2341. MR 2139395, DOI 10.1137/S0036142903425112
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- Mark Ainsworth, J. Tinsley Oden, and C.-Y. Lee, Local a posteriori error estimators for variational inequalities, Numer. Methods Partial Differential Equations 9 (1993), no. 1, 23–33. MR 1193438, DOI 10.1002/num.1690090104
- Douglas N. Arnold and Ragnar Winther, Mixed finite elements for elasticity, Numer. Math. 92 (2002), no. 3, 401–419. MR 1930384, DOI 10.1007/s002110100348
- I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math. 44 (1984), no. 1, 75–102. MR 745088, DOI 10.1007/BF01389757
- Ivo Babuška and Theofanis Strouboulis, The finite element method and its reliability, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 2001. MR 1857191
- F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods, SIAM J. Numer. Anal. 37 (2000), no. 4, 1198–1216. MR 1756422, DOI 10.1137/S0036142998347966
- Faker Ben Belgacem, Patrick Hild, and Patrick Laborde, Extension of the mortar finite element method to a variational inequality modeling unilateral contact, Math. Models Methods Appl. Sci. 9 (1999), no. 2, 287–303. MR 1674556, DOI 10.1142/S0218202599000154
- F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Signorini problem, Math. Comp. 72 (2003), no. 243, 1117–1145. MR 1972730, DOI 10.1090/S0025-5718-03-01490-X
- Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, DOI 10.1007/s00211-003-0492-7
- H. Blum and F.-T. Suttmeier, An adaptive finite element discretisation for a simplified Signorini problem, Calcolo 37 (2000), no. 2, 65–77. MR 1819903, DOI 10.1007/s100920070008
- Viorel Bostan and Weimin Han, A posteriori error analysis for finite element solutions of a frictional contact problem, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 9-12, 1252–1274. MR 2195300, DOI 10.1016/j.cma.2005.06.003
- Viorel Bostan, Weimin Han, and B. D. Reddy, A posteriori error estimation and adaptive solution of elliptic variational inequalities of the second kind, Appl. Numer. Math. 52 (2005), no. 1, 13–38. MR 2102908, DOI 10.1016/j.apnum.2004.06.012
- Dietrich Braess, A posteriori error estimators for obstacle problems—another look, Numer. Math. 101 (2005), no. 3, 415–421. MR 2194822, DOI 10.1007/s00211-005-0634-1
- Dietrich Braess, Carsten Carstensen, and Ronald H. W. Hoppe, Convergence analysis of a conforming adaptive finite element method for an obstacle problem, Numer. Math. 107 (2007), no. 3, 455–471. MR 2336115, DOI 10.1007/s00211-007-0098-6
- D. Braess and W. Dahmen, The mortar element method revisited—what are the right norms?, Domain decomposition methods in science and engineering (Lyon, 2000) Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE), Barcelona, 2002, pp. 27–40. MR 2004064
- Ulrich Brink and Erwin Stein, A posteriori error estimation in large-strain elasticity using equilibrated local Neumann problems, Comput. Methods Appl. Mech. Engrg. 161 (1998), no. 1-2, 77–101. MR 1633995, DOI 10.1016/S0045-7825(97)00310-1
- Gustavo C. Buscaglia, Ricardo Durán, Eduardo A. Fancello, Raúl A. Feijóo, and Claudio Padra, An adaptive finite element approach for frictionless contact problems, Internat. J. Numer. Methods Engrg. 50 (2001), no. 2, 395–418. MR 1807471, DOI 10.1002/1097-0207(20010120)50:2<395::AID-NME30>3.0.CO;2-
- Carsten Carstensen and Sören Bartels, Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM, Math. Comp. 71 (2002), no. 239, 945–969. MR 1898741, DOI 10.1090/S0025-5718-02-01402-3
- Carsten Carstensen, Sören Bartels, and Stefan Jansche, A posteriori error estimates for nonconforming finite element methods, Numer. Math. 92 (2002), no. 2, 233–256. MR 1922920, DOI 10.1007/s002110100378
- Carsten Carstensen, Paola Causin, and Riccardo Sacco, A posteriori dual-mixed adaptive finite element error control for Lamé and Stokes equations, Numer. Math. 101 (2005), no. 2, 309–332. MR 2195346, DOI 10.1007/s00211-005-0616-3
- C. Carstensen, O. Scherf, and P. Wriggers, Adaptive finite elements for elastic bodies in contact, SIAM J. Sci. Comput. 20 (1999), no. 5, 1605–1626. MR 1694675, DOI 10.1137/S1064827595295350
- Patrice Coorevits, Patrick Hild, Khalid Lhalouani, and Taoufik Sassi, Mixed finite element methods for unilateral problems: convergence analysis and numerical studies, Math. Comp. 71 (2002), no. 237, 1–25. MR 1862986, DOI 10.1090/S0025-5718-01-01318-7
- E. Dari, R. Duran, C. Padra, and V. Vampa, A posteriori error estimators for nonconforming finite element methods, RAIRO Modél. Math. Anal. Numér. 30 (1996), no. 4, 385–400 (English, with English and French summaries). MR 1399496, DOI 10.1051/m2an/1996300403851
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- B. Erdmann, M. Frei, R. H. W. Hoppe, R. Kornhuber, and U. Wiest, Adaptive finite element methods for variational inequalities, East-West J. Numer. Math. 1 (1993), no. 3, 165–197. MR 1253634
- Weimin Han, A posteriori error analysis via duality theory, Advances in Mechanics and Mathematics, vol. 8, Springer-Verlag, New York, 2005. With applications in modeling and numerical approximations. MR 2101057
- J. Haslinger, I. Hlaváček, and J. Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of numerical analysis, Vol. IV, Handb. Numer. Anal., IV, North-Holland, Amsterdam, 1996, pp. 313–485. MR 1422506
- Patrick Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact, Comput. Methods Appl. Mech. Engrg. 184 (2000), no. 1, 99–123. MR 1752624, DOI 10.1016/S0045-7825(99)00096-1
- Patrick Hild and Patrick Laborde, Quadratic finite element methods for unilateral contact problems, Appl. Numer. Math. 41 (2002), no. 3, 401–421. MR 1903172, DOI 10.1016/S0168-9274(01)00124-6
- Patrick Hild and Serge Nicaise, A posteriori error estimations of residual type for Signorini’s problem, Numer. Math. 101 (2005), no. 3, 523–549. MR 2194827, DOI 10.1007/s00211-005-0630-5
- R. H. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301–323. MR 1276702, DOI 10.1137/0731016
- S. Hüeber and B. I. Wohlmuth, A primal-dual active set strategy for non-linear multibody contact problems, Comput. Methods Appl. Mech. Engrg. 194 (2005), no. 27-29, 3147–3166. MR 2142538, DOI 10.1016/j.cma.2004.08.006
- Claes Johnson, Adaptive finite element methods for the obstacle problem, Math. Models Methods Appl. Sci. 2 (1992), no. 4, 483–487. MR 1189062, DOI 10.1142/S0218202592000284
- D. W. Kelly, The self-equilibration of residuals and complementary a posteriori error estimates in the finite element method, Internat. J. Numer. Methods Engrg. 20 (1984), no. 8, 1491–1506. MR 759999, DOI 10.1002/nme.1620200811
- D. Kelly and J. Isles, Procedures for residual equilibration and local error estimation in the finite element method, Commun. Appl. Numer. Methods, 5 (1989), pp. 497–505.
- N. Kikuchi and J. T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics, vol. 8, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988. MR 961258, DOI 10.1137/1.9781611970845
- L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, DOI 10.1090/S0025-5718-1990-1011446-7
- P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485–509. MR 701093, DOI 10.1137/0720033
- P. Ladevèze and E. Maunder, A general method for recovering equilibrating element tractions, Comput. Methods Appl. Mech. Engrg., 137 (1996), pp. 111–151.
- C.-Y. Lee and J. T. Oden, A posteriori error estimation of $h$-$p$ finite element approximations of frictional contact problems, Comput. Methods Appl. Mech. Engrg. 113 (1994), no. 1-2, 11–45. MR 1266922, DOI 10.1016/0045-7825(94)90209-7
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, DOI 10.1137/S0036142999360044
- Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, DOI 10.1137/S0036144502409093
- Serge Nicaise, Katharina Witowski, and Barbara I. Wohlmuth, An a posteriori error estimator for the Lamé equation based on equilibrated fluxes, IMA J. Numer. Anal. 28 (2008), no. 2, 331–353. MR 2401201, DOI 10.1093/imanum/drm008
- Khamron Mekchay and Ricardo H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827. MR 2192319, DOI 10.1137/04060929X
- Ricardo H. Nochetto, Alfred Schmidt, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error estimates for monotone semi-linear equations, Numer. Math. 104 (2006), no. 4, 515–538. MR 2249676, DOI 10.1007/s00211-006-0027-0
- S. Ohnimus, E. Stein, and E. Walhorn, Local error estimates of FEM for displacements and stresses in linear elasticity by solving local Neumann problems, Internat. J. Numer. Methods Engrg. 52 (2001), no. 7, 727–746. MR 1857633, DOI 10.1002/nme.228
- E. Stein and S. Ohnimus, Equilibrium method for postprocessing and error estimation in the finite element method, Comput. Assist. Mech. Eng. Sci., 4 (1997), pp. 645–666.
- E. Stein and S. Ohnimus, Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems, Comput. Methods Appl. Mech. Engrg. 176 (1999), no. 1-4, 363–385. New advances in computational methods (Cachan, 1997). MR 1665353, DOI 10.1016/S0045-7825(98)00345-4
- E. Stein, S. Ohnimus, and E. Walhorn, Adaptive finite element discretization in elasticity and elastoplasticity by global and local error estimators using local Neumann–problems, Zeitschrift f. Angewandte Mathematik und Mechanik, 79 (1999), pp. 147–150.
- Rob Stevenson, An optimal adaptive finite element method, SIAM J. Numer. Anal. 42 (2005), no. 5, 2188–2217. MR 2139244, DOI 10.1137/S0036142903425082
- Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, DOI 10.1007/s10208-005-0183-0
- Andreas Veeser, On a posteriori error estimation for constant obstacle problems, Numerical methods for viscosity solutions and applications (Heraklion, 1999) Ser. Adv. Math. Appl. Sci., vol. 59, World Sci. Publ., River Edge, NJ, 2001, pp. 221–234. MR 1886715, DOI 10.1142/9789812799807_{0}012
- R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques, Proceedings of the Fifth International Congress on Computational and Applied Mathematics (Leuven, 1992), 1994, pp. 67–83. MR 1284252, DOI 10.1016/0377-0427(94)90290-9
- —, A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley–Teubner Series Advances in Numerical Mathematics, Wiley–Teubner, Chichester, Stuttgart, 1996.
- R. Verfürth, A review of a posteriori error estimation techniques for elasticity problems, Comput. Methods Appl. Mech. Engrg. 176 (1999), no. 1-4, 419–440. New advances in computational methods (Cachan, 1997). MR 1665355, DOI 10.1016/S0045-7825(98)00347-8
- Y. Wang, Preconditioning for the mixed formulation of linear plane elasticity, Ph.D. thesis, Texas A & M University, 2004.
- Barbara I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition, Lecture Notes in Computational Science and Engineering, vol. 17, Springer-Verlag, Berlin, 2001. MR 1820470, DOI 10.1007/978-3-642-56767-4
- Barbara I. Wohlmuth, A comparison of dual Lagrange multiplier spaces for mortar finite element discretizations, M2AN Math. Model. Numer. Anal. 36 (2002), no. 6, 995–1012 (2003). MR 1958655, DOI 10.1051/m2an:2003002
- Barbara I. Wohlmuth, An a posteriori error estimator for two-body contact problems on non-matching meshes, J. Sci. Comput. 33 (2007), no. 1, 25–45. MR 2338331, DOI 10.1007/s10915-007-9139-7
- P. Wriggers and O. Scherf, Different a posteriori error estimators and indicators for contact problems, Math. Comput. Modelling 28 (1998), no. 4-8, 437–447. Recent advances in contact mechanics. MR 1648773, DOI 10.1016/S0895-7177(98)00133-2
Bibliographic Information
- Alexander Weiss
- Affiliation: Institute of Applied Analysis and Numerical Simulations (IANS), Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Email: weiss@ians.uni-stuttgart.de
- Barbara I. Wohlmuth
- Affiliation: Institute of Applied Analysis and Numerical Simulations (IANS), Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Email: wohlmuth@ians.uni-stuttgart.de
- Received by editor(s): July 17, 2007
- Received by editor(s) in revised form: June 2, 2008
- Published electronically: February 20, 2009
- Additional Notes: This work was supported in part by the Deutsche Forschungsgemeinschaft, SFB 404, B8
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1237-1267
- MSC (2000): Primary 65N30, 65N15, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-09-02235-2
- MathSciNet review: 2501049