Computational approach to solvability of refinement equations
HTML articles powered by AMS MathViewer
- by Victor D. Didenko and Bernd Silbermann;
- Math. Comp. 78 (2009), 1435-1466
- DOI: https://doi.org/10.1090/S0025-5718-09-02232-7
- Published electronically: March 10, 2009
- PDF | Request permission
Abstract:
The solvability and Fredholm properties of refinement equations in spaces of square-integrable functions are studied. Necessary and jointly necessary and sufficient conditions for the solvability of homogeneous and non-homogeneous refinement equations are established. It is shown that in the space $L_2(\mathbb {R})$ the kernel space of any homogeneous equation with a non-trivial solution is infinite dimensional. Moreover, the solvability problem is reduced to the study of singular values of certain matrix sequences. These sequences arise from Galerkin approximations of auxiliary linear operators. The corresponding constructions use only the coefficients of refinement equations that generate multiresolution analysis, and the coefficients of the refinement equation studied. For the equations with polynomial symbols the most complete results are obtained if the corresponding operator is considered on an appropriate subspace of the space $L_2(\mathbb {R})$.References
- Alfred S. Cavaretta, Wolfgang Dahmen, and Charles A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc. 93 (1991), no. 453, vi+186. MR 1079033, DOI 10.1090/memo/0453
- Charles K. Chui, Wavelets: a mathematical tool for signal processing, SIAM Monographs on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. With a foreword by Gilbert Strang. MR 1443204, DOI 10.1137/1.9780898719727
- Albert Cohen and Ingrid Daubechies, A new technique to estimate the regularity of refinable functions, Rev. Mat. Iberoamericana 12 (1996), no. 2, 527–591. MR 1402677, DOI 10.4171/RMI/207
- A. Cohen, K. Gröchenig, and L. F. Villemoes, Regularity of multivariate refinable functions, Constr. Approx. 15 (1999), no. 2, 241–255. MR 1668921, DOI 10.1007/s003659900106
- Charles K. Chui, An introduction to wavelets, Wavelet Analysis and its Applications, vol. 1, Academic Press, Inc., Boston, MA, 1992. MR 1150048
- David Colella and Christopher Heil, Characterizations of scaling functions: continuous solutions, SIAM J. Matrix Anal. Appl. 15 (1994), no. 2, 496–518. MR 1266600, DOI 10.1137/S0895479892225336
- Christopher Heil and David Colella, Matrix refinement equations: existence and uniqueness, J. Fourier Anal. Appl. 2 (1996), no. 4, 363–377. MR 1395770
- Ingrid Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), no. 7, 909–996. MR 951745, DOI 10.1002/cpa.3160410705
- Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1162107, DOI 10.1137/1.9781611970104
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal. 22 (1991), no. 5, 1388–1410. MR 1112515, DOI 10.1137/0522089
- Ingrid Daubechies and Jeffrey C. Lagarias, Two-scale difference equations. II. Local regularity, infinite products of matrices and fractals, SIAM J. Math. Anal. 23 (1992), no. 4, 1031–1079. MR 1166574, DOI 10.1137/0523059
- W. Dahmen, C.A. Micchelli, Subdivision algorithms for the generation of box spline surfaces, Comput. Aided Geom. Des., 1(1984), 115–129.
- V. D. Didenko, A. A. Korenovskyy, and S. L. Lee, On the spectral radius of convolution dilation operators, Z. Anal. Anwendungen 21 (2002), no. 4, 879–890. MR 1957302, DOI 10.4171/ZAA/1114
- Thomas B. Dinsenbacher and Douglas P. Hardin, Nonhomogeneous refinement equations, Wavelets, multiwavelets, and their applications (San Diego, CA, 1997) Contemp. Math., vol. 216, Amer. Math. Soc., Providence, RI, 1998, pp. 117–127. MR 1614717, DOI 10.1090/conm/216/02968
- I. Gohberg, N. Feldman, Convolution equations and projection methods for their solutions, Akademie-Verlag, Berlin, 1974.
- Israel Gohberg and Naum Krupnik, Einführung in die Theorie der eindimensionalen singulären Integraloperatoren, Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW). Mathematische Reihe [Textbooks and Monographs in the Exact Sciences. Mathematical Series], vol. 63, Birkhäuser Verlag, Basel-Boston, Mass., 1979 (German). Translated from the Russian by B. Schüppel. MR 545507
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, RI, 1969. Translated from the Russian by A. Feinstein. MR 246142
- Roland Hagen, Steffen Roch, and Bernd Silbermann, $C^*$-algebras and numerical analysis, Monographs and Textbooks in Pure and Applied Mathematics, vol. 236, Marcel Dekker, Inc., New York, 2001. MR 1792428
- Bin Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix, Adv. Comput. Math. 24 (2006), no. 1-4, 375–403. MR 2222276, DOI 10.1007/s10444-004-7615-2
- Rong-Qing Jia, Ka-Sing Lau, and Ding-Xuan Zhou, $L_p$ solutions of refinement equations, J. Fourier Anal. Appl. 7 (2001), no. 2, 143–167. MR 1817673, DOI 10.1007/BF02510421
- Ka-Sing Lau and Jianrong Wang, Characterization of $L^p$-solutions for the two-scale dilation equations, SIAM J. Math. Anal. 26 (1995), no. 4, 1018–1046. MR 1338372, DOI 10.1137/S0036141092238771
- Stephane G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^2(\textbf {R})$, Trans. Amer. Math. Soc. 315 (1989), no. 1, 69–87. MR 1008470, DOI 10.1090/S0002-9947-1989-1008470-5
- D. Malone, Solutions to Dilation Equations, Ph.D. Thesis, University of Dublin, 2000.
- David Malone, $L^2(\Bbb R)$ solutions of dilation equations and Fourier-like transforms, J. Fourier Anal. Appl. 8 (2002), no. 3, 309–317. MR 1906255, DOI 10.1007/s00041-002-0015-4
- Charles A. Micchelli and Hartmut Prautzsch, Uniform refinement of curves, Linear Algebra Appl. 114/115 (1989), 841–870. MR 986909, DOI 10.1016/0024-3795(89)90495-3
- Bernd Silbermann, Modified finite sections for Toeplitz operators and their singular values, SIAM J. Matrix Anal. Appl. 24 (2003), no. 3, 678–692. MR 1972674, DOI 10.1137/S089547980139515X
- Bernd Silbermann, Fredholm theory and numerical linear algebra, Recent advances in operator theory and its applications, Oper. Theory Adv. Appl., vol. 160, Birkhäuser, Basel, 2005, pp. 403–411. MR 2191100, DOI 10.1007/3-7643-7398-9_{2}0
- Gilbert Strang and Ding-Xuan Zhou, Inhomogeneous refinement equations, J. Fourier Anal. Appl. 4 (1998), no. 6, 733–747. MR 1666013, DOI 10.1007/BF02479677
- Lars F. Villemoes, Energy moments in time and frequency for two-scale difference equation solutions and wavelets, SIAM J. Math. Anal. 23 (1992), no. 6, 1519–1543. MR 1185640, DOI 10.1137/0523085
Bibliographic Information
- Victor D. Didenko
- Affiliation: Department of Mathematics, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei
- Email: diviol@gmail.com
- Bernd Silbermann
- Affiliation: Faculty of Mathematics, University of Technology Chemnitz, 09107 Chemnitz, Germany
- Email: Bernd.Silbermann@mathematik.tu-chemnitz.de
- Received by editor(s): November 16, 2007
- Received by editor(s) in revised form: August 18, 2008
- Published electronically: March 10, 2009
- Additional Notes: The first author was supported in part by Universiti Brunei Darussalam Grants PNC2/2/RG/1(66) and PNC2/2/RG/1(72)
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 1435-1466
- MSC (2000): Primary 65T60; Secondary 42C40, 39B32
- DOI: https://doi.org/10.1090/S0025-5718-09-02232-7
- MathSciNet review: 2501057