Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers
HTML articles powered by AMS MathViewer
- by Sören Bartels, Christian Lubich and Andreas Prohl;
- Math. Comp. 78 (2009), 1269-1292
- DOI: https://doi.org/10.1090/S0025-5718-09-02221-2
- Published electronically: February 18, 2009
- PDF | Request permission
Abstract:
We propose fully discrete schemes to approximate the harmonic map heat flow and wave maps into spheres. The finite-element based schemes preserve a unit length constraint at the nodes by means of approximate discrete Lagrange multipliers, satisfy a discrete energy law, and iterates are shown to converge to weak solutions of the continuous problem. Comparative computational studies are included to motivate finite-time blow-up behavior in both cases.References
- François Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal. 34 (1997), no. 5, 1708–1726. MR 1472192, DOI 10.1137/S0036142994264249
- François Alouges and Pascal Jaisson, Convergence of a finite element discretization for the Landau-Lifshitz equations in micromagnetism, Math. Models Methods Appl. Sci. 16 (2006), no. 2, 299–316. MR 2210092, DOI 10.1142/S0218202506001169
- Sören Bartels and Andreas Prohl, Constraint preserving implicit finite element discretization of harmonic map flow into spheres, Math. Comp. 76 (2007), no. 260, 1847–1859. MR 2336271, DOI 10.1090/S0025-5718-07-02026-1
- Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation, SIAM J. Numer. Anal. 44 (2006), no. 4, 1405–1419. MR 2257110, DOI 10.1137/050631070
- Sören Bartels and Andreas Prohl, Stable discretization of scalar and constrained vectorial Perona-Malik equation, Interfaces Free Bound. 9 (2007), no. 4, 431–453. MR 2358212, DOI 10.4171/IFB/172
- John W. Barrett, Sören Bartels, Xiaobing Feng, and Andreas Prohl, A convergent and constraint-preserving finite element method for the $p$-harmonic flow into spheres, SIAM J. Numer. Anal. 45 (2007), no. 3, 905–927. MR 2318794, DOI 10.1137/050639429
- Sören Bartels, Xiaobing Feng, and Andreas Prohl, Finite element approximations of wave maps into spheres, SIAM J. Numer. Anal. 46 (2007/08), no. 1, 61–87. MR 2377255, DOI 10.1137/060659971
- Sören Bartels and Andreas Prohl, Convergence of an implicit, constraint preserving finite element discretization of $p$-harmonic heat flow into spheres, Numer. Math. 109 (2008), no. 4, 489–507. MR 2407320, DOI 10.1007/s00211-008-0150-1
- Piotr Bizoń, Tadeusz Chmaj, and Zbisław Tabor, Dispersion and collapse of wave maps, Nonlinearity 13 (2000), no. 4, 1411–1423. MR 1767966, DOI 10.1088/0951-7715/13/4/323
- Piotr Bizoń, Tadeusz Chmaj, and Zbisław Tabor, Formation of singularities for equivariant $(2+1)$-dimensional wave maps into the 2-sphere, Nonlinearity 14 (2001), no. 5, 1041–1053. MR 1862811, DOI 10.1088/0951-7715/14/5/308
- Kung-Ching Chang, Wei Yue Ding, and Rugang Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces, J. Differential Geom. 36 (1992), no. 2, 507–515. MR 1180392
- Yun Mei Chen and Michael Struwe, Existence and partial regularity results for the heat flow for harmonic maps, Math. Z. 201 (1989), no. 1, 83–103. MR 990191, DOI 10.1007/BF01161997
- Jean-Michel Coron and Jean-Michel Ghidaglia, Explosion en temps fini pour le flot des applications harmoniques, C. R. Acad. Sci. Paris Sér. I Math. 308 (1989), no. 12, 339–344 (French, with English summary). MR 992088
- J.F. Grotowski, J. Shatah, A note on geometric heat flows in critical dimensions, Preprint (2006), downloadable at: http://math.nyu.edu/faculty/shatah/preprints/gs06.pdf.
- Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, 2nd ed., Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006. Structure-preserving algorithms for ordinary differential equations. MR 2221614
- J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543–615. MR 2372807, DOI 10.1007/s00222-007-0089-3
- Martin Kružík and Andreas Prohl, Recent developments in the modeling, analysis, and numerics of ferromagnetism, SIAM Rev. 48 (2006), no. 3, 439–483. MR 2278438, DOI 10.1137/S0036144504446187
- I. Rodnianski, J. Sterbenz, On the formation of singularities in the critical $O(3)$ $\sigma$-model, preprint (arXiv-series), (2006).
- Jalal Shatah, Weak solutions and development of singularities of the $\textrm {SU}(2)$ $\sigma$-model, Comm. Pure Appl. Math. 41 (1988), no. 4, 459–469. MR 933231, DOI 10.1002/cpa.3160410405
- Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. MR 1674843
- R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Mathematical Surveys and Monographs, vol. 49, American Mathematical Society, Providence, RI, 1997. MR 1422252, DOI 10.1090/surv/049
- Michael Struwe, Geometric evolution problems, Nonlinear partial differential equations in differential geometry (Park City, UT, 1992) IAS/Park City Math. Ser., vol. 2, Amer. Math. Soc., Providence, RI, 1996, pp. 257–339. MR 1369591, DOI 10.1090/pcms/002/07
- Michael Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985), no. 4, 558–581. MR 826871, DOI 10.1007/BF02567432
- B. Tang, G. Sapiro, V. Caselles, Diffusion of generated data on non-flat manifolds via harmonic maps theory: the direction diffusion case. Int. J. Comput. Vision 36, pp. 149–161 (2000).
- B. Tang, G. Sapiro, V. Caselles, Color image enhancement via chromaticity diffusion, IEEE Trans. Image Proc. 10, pp. 701–707 (2001).
- Daniel Tataru, The wave maps equation, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 185–204. MR 2043751, DOI 10.1090/S0273-0979-04-01005-5
- Luminita A. Vese and Stanley J. Osher, Numerical methods for $p$-harmonic flows and applications to image processing, SIAM J. Numer. Anal. 40 (2002), no. 6, 2085–2104 (2003). MR 1974176, DOI 10.1137/S0036142901396715
Bibliographic Information
- Sören Bartels
- Affiliation: Institute for Numerical Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 6, D-53115 Bonn, Germany
- Email: bartels@ins.uni-bonn.de
- Christian Lubich
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- MR Author ID: 116445
- Email: lubich@na.uni-tuebingen.de
- Andreas Prohl
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: prohl@na.uni-tuebingen.de
- Received by editor(s): April 10, 2007
- Received by editor(s) in revised form: April 30, 2008
- Published electronically: February 18, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1269-1292
- MSC (2000): Primary 65M12, 65M60, 35K55, 35Q35
- DOI: https://doi.org/10.1090/S0025-5718-09-02221-2
- MathSciNet review: 2501050