AMS :: Mathematics of Computation Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Conservative stochastic differential equations: Mathematical and numerical analysis
HTML articles powered by AMS MathViewer

by Erwan Faou and Tony Lelièvre;
Math. Comp. 78 (2009), 2047-2074
DOI: https://doi.org/10.1090/S0025-5718-09-02220-0
Published electronically: January 30, 2009

Abstract:

We consider stochastic differential equations on the whole Euclidean space possessing a scalar invariant along their solutions. The stochastic dynamics therefore evolves on a hypersurface of the ambient space. Using orthogonal coordinate systems, we show the existence and uniqueness of smooth solutions of the Kolmogorov equation under some ellipticity conditions over the invariant hypersurfaces. If we assume, moreover, the existence of an invariant measure, we show the exponential convergence of the solution towards its average. In the second part, we consider numerical approximation of the stochastic differential equation, and show the convergence and numerical ergodicity of a class of projected schemes. In the context of molecular dynamics, this yields numerical schemes that are ergodic with respect to the microcanonical measure over isoenergy surfaces.
References
  • M.P. Allen and D.J. Tildesley. Computer Simulation of Liquids. Clarendon Press, Oxford, 1987.
  • S.A. Allison and J.A. McCammon. Transport properties of rigid and flexible macromolecules by Brownian dynamics simulation. Biopolymers, 23(1):167–187, 1984.
  • H.C. Andersen. Rattle: a “velocity” version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys., 52:24–34, 1983.
  • Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
  • Eric Cancès, François Castella, Philippe Chartier, Erwan Faou, Claude Le Bris, Frédéric Legoll, and Gabriel Turinici, Long-time averaging for integrable Hamiltonian dynamics, Numer. Math. 100 (2005), no. 2, 211–232. MR 2135782, DOI 10.1007/s00211-005-0599-0
  • E. Cancès, F. Castella, P. Chartier, E. Faou, C. Le Bris, F. Legoll, and G. Turinici. High-order averaging schemes with error bounds for thermodynamical properties calculations by molecular dynamics simulations. J. Chem. Phys., 121(21):10346–10355, 2004.
  • Giovanni Ciccotti, Tony Lelievre, and Eric Vanden-Eijnden, Projection of diffusions on submanifolds: application to mean force computation, Comm. Pure Appl. Math. 61 (2008), no. 3, 371–408. MR 2376846, DOI 10.1002/cpa.20210
  • E. Faou. Développements asymptotiques dans les coques linéairement élastiques. Thèse, Université de Rennes 1, 2000.
  • Erwan Faou, Elasticity on a thin shell: formal series solution, Asymptot. Anal. 31 (2002), no. 3-4, 317–361. MR 1937843
  • E. Faou. Nosé-Hoover dynamics in a shaker. J. Chem. Phys., 124:184104, 2006.
  • D. Frenkel and B. Smit. Understanding molecular dynamics: from algorithms to applications. Academic Press, London, 2002.
  • O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci. 6 (1996), no. 5, 449–467. MR 1411343, DOI 10.1007/s003329900018
  • Axel Grorud and Denis Talay, Approximation of Lyapunov exponents of nonlinear stochastic differential equations, SIAM J. Appl. Math. 56 (1996), no. 2, 627–650. MR 1381664, DOI 10.1137/S0036139992227710
  • Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations. MR 1904823, DOI 10.1007/978-3-662-05018-7
  • Tony Lelièvre, Claude Le Bris, and Eric Vanden-Eijnden, Analyse de certains schémas de discrétisation pour des équations différentielles stochastiques contraintes, C. R. Math. Acad. Sci. Paris 346 (2008), no. 7-8, 471–476 (French, with English and French summaries). MR 2417572, DOI 10.1016/j.crma.2008.02.016
  • G. N. Milstein, Yu. M. Repin, and M. V. Tretyakov, Numerical methods for stochastic systems preserving symplectic structure, SIAM J. Numer. Anal. 40 (2002), no. 4, 1583–1604. MR 1951908, DOI 10.1137/S0036142901395588
  • G. N. Milstein, Yu. M. Repin, and M. V. Tretyakov, Symplectic integration of Hamiltonian systems with additive noise, SIAM J. Numer. Anal. 39 (2002), no. 6, 2066–2088. MR 1897950, DOI 10.1137/S0036142901387440
  • H.C. Öttinger. Brownian dynamics of rigid polymer chains with hydrodynamic interactions. Phys. Rev. E, 50(4):2696–2701, 1994.
  • J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of $n$-alkanes. J. Comput. Phys., 23:327–342, 1977.
  • D. Talay. Second order discretization schemes of stochastic differential system for the computation of the invariant law. Stochastics and Stochastic Reports, 29 (1):13–36, 1990.
  • Denis Talay, Approximation of upper Lyapunov exponents of bilinear stochastic differential systems, SIAM J. Numer. Anal. 28 (1991), no. 4, 1141–1164. MR 1111458, DOI 10.1137/0728061
  • Denis Talay and Luciano Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations, Stochastic Anal. Appl. 8 (1990), no. 4, 483–509 (1991). MR 1091544, DOI 10.1080/07362999008809220
  • W.F. Van Gunsteren and H.J.C. Berendsen. Algorithms for Brownian dynamics. Mol. Phys., 45(3):637–647, 1982.
Similar Articles
Bibliographic Information
  • Erwan Faou
  • Affiliation: INRIA & Ecole Normale Supérieure de Cachan Bretagne, Avenue Robert Schumann, 35170 Bruz, France
  • MR Author ID: 656335
  • Email: Erwan.Faou@inria.fr
  • Tony Lelièvre
  • Affiliation: INRIA Rocquencourt, MICMAC project-team, B.P. 105, 78153 Le Chesnay Cedex, France
  • Address at time of publication: CERMICS, Ecole Nationale des Ponts (ParisTech), 6 & 8 Av. B. Pascal, 77455 Marne-la-Vallée, France
  • Email: lelievre@cermics.enpc.fr
  • Received by editor(s): February 22, 2008
  • Received by editor(s) in revised form: September 17, 2008
  • Published electronically: January 30, 2009
  • © Copyright 2009 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Math. Comp. 78 (2009), 2047-2074
  • MSC (2000): Primary 60H10, 60H30, 58J65, 65C20
  • DOI: https://doi.org/10.1090/S0025-5718-09-02220-0
  • MathSciNet review: 2521278