Lower bounds for Z-numbers
HTML articles powered by AMS MathViewer
- by Artūras Dubickas and Michael J. Mossinghoff;
- Math. Comp. 78 (2009), 1837-1851
- DOI: https://doi.org/10.1090/S0025-5718-09-02211-X
- Published electronically: January 23, 2009
- PDF | Request permission
Abstract:
Let $p/q$ be a rational noninteger number with $p>q\geq 2$. A real number $\lambda >0$ is a $Z_{p/q}$-number if $\{\lambda (p/q)^n\}<1/q$ for every nonnegative integer $n$, where $\{x\}$ denotes the fractional part of $x$. We develop several algorithms to search for $Z_{p/q}$-numbers, and use them to determine lower bounds on such numbers for several $p$ and $q$. It is shown, for instance, that if there is a $Z_{3/2}$-number, then it is greater than $2^{57}$. We also explore some connections between these problems and some questions regarding iterated maps on integers.References
- David Applegate and Jeffrey C. Lagarias, Lower bounds for the total stopping time of $3x+1$ iterates, Math. Comp. 72 (2003), no. 242, 1035–1049. MR 1954983, DOI 10.1090/S0025-5718-02-01425-4
- M.-J. Bertin, A. Decomps-Guilloux, M. Grandet-Hugot, M. Pathiaux-Delefosse, and J.-P. Schreiber, Pisot and Salem numbers, Birkhäuser Verlag, Basel, 1992. With a preface by David W. Boyd. MR 1187044, DOI 10.1007/978-3-0348-8632-1
- Yann Bugeaud, Linear mod one transformations and the distribution of fractional parts $\{\xi (p/q)^n\}$, Acta Arith. 114 (2004), no. 4, 301–311. MR 2101819, DOI 10.4064/aa114-4-1
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1, Birkhäuser, Boston, MA, 1980. MR 613981
- Artūras Dubickas, There are infinitely many limit points of the fractional parts of powers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), no. 4, 391–397. MR 2184199, DOI 10.1007/BF02829801
- Artūras Dubickas, Arithmetical properties of powers of algebraic numbers, Bull. London Math. Soc. 38 (2006), no. 1, 70–80. MR 2201605, DOI 10.1112/S0024609305017728
- Leopold Flatto, Jeffrey C. Lagarias, and Andrew D. Pollington, On the range of fractional parts $\{\xi (p/q)^n\}$, Acta Arith. 70 (1995), no. 2, 125–147. MR 1322557, DOI 10.4064/aa-70-2-125-147
- Leopold Flatto, $Z$-numbers and $\beta$-transformations, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 181–201. MR 1185087, DOI 10.1090/conm/135/1185087
- GMP: The GNU multiple precision arithmetic library. www.swox.com/gmp.
- J. F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins, Compositio Math. 2 (1935), 250–258 (German). MR 1556918
- Ilia Krasikov and Jeffrey C. Lagarias, Bounds for the $3x+1$ problem using difference inequalities, Acta Arith. 109 (2003), no. 3, 237–258. MR 1980260, DOI 10.4064/aa109-3-4
- J. C. Lagarias and N. J. A. Sloane, Approximate squaring, Experiment. Math. 13 (2004), no. 1, 113–128. MR 2065571
- Jeffrey C. Lagarias, The $3x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), no. 1, 3–23. MR 777565, DOI 10.2307/2322189
- J. C. Lagarias, The $3x+1$ Problem: An Annotated Bibliography (2008). arXiv:math/0309224v11.
- J. C. Lagarias, The $3x+1$ Problem: An Annotated Bibliography, II (2008). arXiv:math/0608208v4.
- M. A. Lerma, Construction of a number greater than one whose powers are uniformly distributed modulo one, 1996. http://math.northwestern.edu/$\sim$mlerma/papers.
- K. Mahler, An unsolved problem on the powers of $3/2$, J. Austral. Math. Soc. 8 (1968), 313–321. MR 227109
- Charles Pisot, Répartition $(\textrm {mod} 1)$ des puissances successives des nombres réels, Comment. Math. Helv. 19 (1946), 153–160 (French). MR 17744, DOI 10.1007/BF02565954
- John Simons and Benne de Weger, Theoretical and computational bounds for $m$-cycles of the $3n+1$-problem, Acta Arith. 117 (2005), no. 1, 51–70. MR 2110503, DOI 10.4064/aa117-1-3
- T. Vijayaraghavan, On the fractional parts of the powers of a number. I, J. London Math. Soc. 15 (1940), 159–160. MR 2326, DOI 10.1112/jlms/s1-15.2.159
- Günther J. Wirsching, The dynamical system generated by the $3n+1$ function, Lecture Notes in Mathematics, vol. 1681, Springer-Verlag, Berlin, 1998. MR 1612686, DOI 10.1007/BFb0095985
Bibliographic Information
- Artūras Dubickas
- Affiliation: Department of Mathematics and Informatics, Vilnius University Naugarduko 24, LT-03225 Vilnius, Lithuania
- Email: arturas.dubickas@mif.vu.lt
- Michael J. Mossinghoff
- Affiliation: Department of Mathematics, Davidson College, Davidson, North Carolina 28035-6996
- MR Author ID: 630072
- ORCID: 0000-0002-7983-5427
- Email: mimossinghoff@davidson.edu
- Received by editor(s): January 22, 2008
- Received by editor(s) in revised form: August 7, 2008
- Published electronically: January 23, 2009
- Additional Notes: The research of the first author was partially supported by the Lithuanian State Science and Studies Foundation.
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 1837-1851
- MSC (2000): Primary 11K31; Secondary 11J71, 11Y35
- DOI: https://doi.org/10.1090/S0025-5718-09-02211-X
- MathSciNet review: 2501079