A multivariate fast discrete Walsh transform with an application to function interpolation
HTML articles powered by AMS MathViewer
- by Kwong-Ip Liu, Josef Dick and Fred J. Hickernell;
- Math. Comp. 78 (2009), 1573-1591
- DOI: https://doi.org/10.1090/S0025-5718-09-02202-9
- Published electronically: January 9, 2009
- PDF | Request permission
Abstract:
For high dimensional problems, such as approximation and integration, one cannot afford to sample on a grid because of the curse of dimensionality. An attractive alternative is to sample on a low discrepancy set, such as an integration lattice or a digital net. This article introduces a multivariate fast discrete Walsh transform for data sampled on a digital net that requires only $\mathcal {O}(N \log N)$ operations, where $N$ is the number of data points. This algorithm and its inverse are digital analogs of multivariate fast Fourier transforms.
This fast discrete Walsh transform and its inverse may be used to approximate the Walsh coefficients of a function and then construct a spline interpolant of the function. This interpolant may then be used to estimate the function’s effective dimension, an important concept in the theory of numerical multivariate integration. Numerical results for various functions are presented.
References
- N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404. MR 51437, DOI 10.1090/S0002-9947-1950-0051437-7
- Hans-Joachim Bungartz and Michael Griebel, Sparse grids, Acta Numer. 13 (2004), 147–269. MR 2249147, DOI 10.1017/S0962492904000182
- R. Caflisch, R. Morokoff and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce the effective dimension. J. Comput. Finance, 1, 27-46, 1997.
- H. E. Chrestenson, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17–31. MR 68659
- James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965), 297–301. MR 178586, DOI 10.1090/S0025-5718-1965-0178586-1
- Josef Dick and Friedrich Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces, J. Complexity 21 (2005), no. 2, 149–195. MR 2123222, DOI 10.1016/j.jco.2004.07.003
- B. Efron and C. Stein, The jackknife estimate of variance, Ann. Statist. 9 (1981), no. 3, 586–596. MR 615434
- Gregory E. Fasshauer, Meshfree approximation methods with MATLAB, Interdisciplinary Mathematical Sciences, vol. 6, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2357267, DOI 10.1142/6437
- Henri Faure, Discrépance de suites associées à un système de numération (en dimension $s$), Acta Arith. 41 (1982), no. 4, 337–351 (French). MR 677547, DOI 10.4064/aa-41-4-337-351
- Gerhard Larcher, A class of low-discrepancy point-sets and its application to numerical integration by number-theoretical methods, Österreichisch-Ungarisch-Slowakisches Kolloquium über Zahlentheorie (Maria Trost, 1992) Grazer Math. Ber., vol. 318, Karl-Franzens-Univ. Graz, Graz, 1993, pp. 69–80. MR 1227403
- Gerhard Larcher and Claudia Traunfellner, On the numerical integration of Walsh series by number-theoretic methods, Math. Comp. 63 (1994), no. 207, 277–291. MR 1234426, DOI 10.1090/S0025-5718-1994-1234426-9
- Dong Li and Fred J. Hickernell, Trigonometric spectral collocation methods on lattices, Recent advances in scientific computing and partial differential equations (Hong Kong, 2002) Contemp. Math., vol. 330, Amer. Math. Soc., Providence, RI, 2003, pp. 121–132. MR 2011715, DOI 10.1090/conm/330/05887
- Harald Niederreiter, Low-discrepancy point sets, Monatsh. Math. 102 (1986), no. 2, 155–167. MR 861937, DOI 10.1007/BF01490206
- Harald Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1172997, DOI 10.1137/1.9781611970081
- Harald Niederreiter, Constructions of $(t,m,s)$-nets and $(t,s)$-sequences, Finite Fields Appl. 11 (2005), no. 3, 578–600. MR 2158777, DOI 10.1016/j.ffa.2005.01.001
- Harald Niederreiter and Gottlieb Pirsic, Duality for digital nets and its applications, Acta Arith. 97 (2001), no. 2, 173–182. MR 1824983, DOI 10.4064/aa97-2-5
- Daniel Potts, Gabriele Steidl, and Manfred Tasche, Fast Fourier transforms for nonequispaced data: a tutorial, Modern sampling theory, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2001, pp. 247–270. MR 1865690
- C.M. Rader, Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE, 56, 1107–1108, 1968.
- I. H. Sloan and S. Joe, Lattice methods for multiple integration, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR 1442955
- I. M. Sobol′, Distribution of points in a cube and approximate evaluation of integrals, Ž. Vyčisl. Mat i Mat. Fiz. 7 (1967), 784–802 (Russian). MR 219238
- I. M. Tsobol′, Mnogomernye kvadraturnye formuly i funktsii Khaara, Izdat. “Nauka”, Moscow, 1969 (Russian). MR 422968
- I. M. Sobol′, Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Math. Comput. Simulation 55 (2001), no. 1-3, 271–280. The Second IMACS Seminar on Monte Carlo Methods (Varna, 1999). MR 1823119, DOI 10.1016/S0378-4754(00)00270-6
- Grace Wahba, Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. MR 1045442, DOI 10.1137/1.9781611970128
- J. L. Walsh, A Closed Set of Normal Orthogonal Functions, Amer. J. Math. 45 (1923), no. 1, 5–24. MR 1506485, DOI 10.2307/2387224
- Xiaoqun Wang and Kai-Tai Fang, The effective dimension and quasi-Monte Carlo integration, J. Complexity 19 (2003), no. 2, 101–124. MR 1966664, DOI 10.1016/S0885-064X(03)00003-7
- X. Wang and F. J. Hickernell, Randomized Halton sequences, Math. Comput. Modelling 32 (2000), no. 7-8, 887–899. MR 1792105, DOI 10.1016/S0895-7177(00)00178-3
- Xiaoqun Wang and Ian H. Sloan, Why are high-dimensional finance problems often of low effective dimension?, SIAM J. Sci. Comput. 27 (2005), no. 1, 159–183. MR 2201179, DOI 10.1137/S1064827503429429
- Xiaoqun Wang and Ian H. Sloan, Efficient weighted lattice rules with applications to finance, SIAM J. Sci. Comput. 28 (2006), no. 2, 728–750. MR 2231728, DOI 10.1137/S1064827502418197
- Xiaoyan Zeng, King-Tai Leung, and Fred J. Hickernell, Error analysis of splines for periodic problems using lattice designs, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, pp. 501–514. MR 2208728, DOI 10.1007/3-540-31186-6_{3}1
- Peter Zinterhof, Über die schnelle Lösung von hochdimensionalen Fredholm-Gleichungen vom Faltungstyp mit zahlentheoretischen Methoden, Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 196 (1987), no. 4-7, 159–169 (German). MR 963215
Bibliographic Information
- Kwong-Ip Liu
- Affiliation: Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People’s Republic of China
- Email: kiliu@math.hkbu.edu.hk
- Josef Dick
- Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney 2052, Australia
- Email: josi@maths.unsw.edu.au
- Fred J. Hickernell
- Affiliation: Department of Applied Mathematics, Illinois Institute of Technology, Room E1-208, 10 W. 32nd Street, Chicago, Illinois 60616
- ORCID: 0000-0001-6677-1324
- Email: hickernell@iit.edu
- Received by editor(s): January 11, 2008
- Received by editor(s) in revised form: July 29, 2008
- Published electronically: January 9, 2009
- Additional Notes: This research was supported in part by the Hong Kong Research Grants Council grant HKBU/2009/04P, the HKSAR Research Grants Council Project No. HKBU200605 and the United States National Science Foundation grant NSF-DMS-0713848.
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1573-1591
- MSC (2000): Primary 42C10, 41A15
- DOI: https://doi.org/10.1090/S0025-5718-09-02202-9
- MathSciNet review: 2501064